Journal of the Mathematical Society of Japan

Weak Neumann implies $H^\infty$ for Stokes

Matthias GEIßERT and Peer Christian KUNSTMANN

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Let $\Omega\subset {\mathbb R}^n$ be a domain with uniform $C^3$ boundary and assume that the Helmholtz decomposition exists in ${\mathbb L}^q(\Omega):=L^q(\Omega)^n$ for some $q\in(1,\infty)$. We show that a suitable translate of the Stokes operator admits a bounded ${\cal H}^\infty$-calculus in ${\mathbb L}_\sigma^p(\Omega)$ for $p\in(\min\{q,q'\},\max\{q,q'\})$. For the proof we use a recent maximal regularity result for the Stokes operator on such domains ([GHHS12]) and an abstract result for the ${\cal H}^\infty$-calculus in complemented subspaces ([KKW06], [KW13]).

Article information

Source
J. Math. Soc. Japan Volume 67, Number 1 (2015), 183-193.

Dates
First available in Project Euclid: 22 January 2015

Permanent link to this document
https://projecteuclid.org/euclid.jmsj/1421936549

Digital Object Identifier
doi:10.2969/jmsj/06710183

Mathematical Reviews number (MathSciNet)
MR3304018

Zentralblatt MATH identifier
1317.35173

Subjects
Primary: 35Q30: Navier-Stokes equations [See also 76D05, 76D07, 76N10] 47A60: Functional calculus

Keywords
Stokes operator $H^\infty$-functional calculus general unbounded domains Helmholtz decomposition fractional powers

Citation

GEIßERT, Matthias; KUNSTMANN, Peer Christian. Weak Neumann implies $H^\infty$ for Stokes. J. Math. Soc. Japan 67 (2015), no. 1, 183--193. doi:10.2969/jmsj/06710183. https://projecteuclid.org/euclid.jmsj/1421936549.


Export citation

References