Journal of the Mathematical Society of Japan

On the stability of locally conformal Kähler structures

Ryushi Goto

Full-text: Open access


In this article we develop a new approach to the problem of the stability of locally conformally Kähler structures (l.c.k structures) under small deformations of complex structures and deformations of flat line bundles. We show a cohomological criterion for the stability of l.c.k structures. We apply our approach to generalizations of Hopf manifolds to obtain the stability of l.c.k structures which do not have potential in general. We give an explicit description of the cohomological obstructions of the stability of l.c.k structures on Inoue surfaces with $b_2=0$.

Article information

J. Math. Soc. Japan, Volume 66, Number 4 (2014), 1375-1401.

First available in Project Euclid: 23 October 2014

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 53C55: Hermitian and Kählerian manifolds [See also 32Cxx]
Secondary: 32G05: Deformations of complex structures [See also 13D10, 16S80, 58H10, 58H15]

locally conformally Kähler metrics non-Kähler manifolds deformation theory


Goto, Ryushi. On the stability of locally conformal Kähler structures. J. Math. Soc. Japan 66 (2014), no. 4, 1375--1401. doi:10.2969/jmsj/06641375.

Export citation


  • F. A. Belgun, On the metric structure of non-Kähler complex surfaces, Math. Ann., 317 (2000), 1–40.
  • P. C. Boyer and K. Galicki, Sasakian Geometry, Oxford Math. Monogr., Oxford Science Publications, Oxford University Press, Oxford, 2008.
  • M. Brunella, Locally conformally Kähler metrics on certain non-Kählerian surfaces, Math. Ann., 346 (2010), 629–639.
  • M. Brunella, Locally conformally Kähler metrics on Kato surfaces, Nagoya Math. J., 202 (2011), 77–81.
  • S. Dragomir and L. Ornea, Locally Conformal Kähler Geometry, Progr. Math., 155, Birkhäuser Boston, Inc., Boston, MA, 1998.
  • A. Fujiki and M. Pontecorvo, Anti-self-dual bihermitian structures on Inoue surfaces, J. Differential Geom., 85 (2010), 15–71.
  • R. Goto, Moduli spaces of topological calibrations, Calabi-Yau, hyper-Kähler, $G_2$ and Spin$(7)$ structures, Internat. J. Math., 15 (2004), 211–257.
  • R. Goto, On deformations of generalized Calabi-Yau, hyperKähler, $G_2$ and Spin$(7)$ structures..
  • R. Goto, Deformations of generalized complex and generalized Kähler structures, J. Differential Geom., 84 (2010), 525–560.
  • R. Goto, Poisson structures and generalized Kähler submanifolds, J. Math. Soc. Japan, 61 (2009), 107–132.
  • R. Goto, Unobstructed K-deformations of generalized complex structures and bi-Hermitian structures, Adv. Math., 231 (2012), 1041–1067.
  • P. Gauduchon and L. Ornea, Locally conformally Kähler metrics on Hopf surfaces, Ann. Inst. Fourier (Grenoble), 48 (1998), 1107–1127.
  • M. Inoue, On surfaces of Class ${\rm VII}_{0}$, Invent. Math., 24 (1974), 269–310.
  • M. Ise, On the geometry of Hopf manifolds, Osaka Math. J., 12 (1960), 387–402.
  • K. Kodaira, Complex Manifolds and Deformation of Complex Structures, Grundlehren Math. Wiss., 283, Springer-Verlag, New York, 1986.
  • K. Kodaira and D. C. Spencer, On deformations of complex, analytic structures. I, II, Ann. Math. (2), 67 (1958), 328–466.
  • K. Kodaira and D. C. Spencer, On deformations of complex analytic structures. III, stability theorems for complex structures, Ann. Math. (2), 71 (1960), 43–76.
  • M. de León, B. López, J. C. Marrero and E. Padrón, On the computation of the Lichnerowicz-Jacobi cohomology, J. Geom. Phys., 44 (2003), 507–522.
  • D. Mall, The cohomology of line bundles on Hopf manifolds, Osaka J. Math., 28 (1991), 999–1015.
  • L. Ornea and M. Verbitsky, Locally conformal Kähler manifolds with potential, Math. Ann., 348 (2010), 25–33.
  • L. Ornea and M. Verbitsky, Morse-Novikov cohomology of locally conformally Kähler manifolds, J. Geom. Phys., 59 (2009), 295–305.
  • F. Tricerri, Some examples of locally conformal Kähler manifolds, Rend. Sem. Mat. Univ. Politec. Torino, 40 (1982), 81–92.
  • I. Vaisman, Generalized Hopf manifolds, Geom. Dedicata, 13 (1982), 231–255.