Journal of the Mathematical Society of Japan

On the ideal class groups of the maximal cyclotomic extensions of algebraic number fields

Mamoru ASADA

Full-text: Open access

Abstract

We shall consider the maximal cyclotomic extension of a totally real finite algebraic number field and its ideal class group. We shall investigate the structure of the ideal class group with the action of the cyclotomic Galois group.

Article information

Source
J. Math. Soc. Japan, Volume 66, Number 4 (2014), 1091-1103.

Dates
First available in Project Euclid: 23 October 2014

Permanent link to this document
https://projecteuclid.org/euclid.jmsj/1414090235

Digital Object Identifier
doi:10.2969/jmsj/06641091

Mathematical Reviews number (MathSciNet)
MR3272592

Zentralblatt MATH identifier
1332.11096

Subjects
Primary: 11R18: Cyclotomic extensions 11R23: Iwasawa theory

Keywords
ideal class groups cyclotomic extensions

Citation

ASADA, Mamoru. On the ideal class groups of the maximal cyclotomic extensions of algebraic number fields. J. Math. Soc. Japan 66 (2014), no. 4, 1091--1103. doi:10.2969/jmsj/06641091. https://projecteuclid.org/euclid.jmsj/1414090235


Export citation

References

  • M. Asada, On Galois groups of abelian extensions over maximal cyclotomic fields, Tohoku Math. J. (2), 60 (2008), 135–147.
  • A. Brumer, The class group of all cyclotomic integers, J. Pure Appl. Algebra, 20 (1981), 107–111.
  • K. Horie, CM-fields with all roots of unity, Compositio Math., 74 (1990), 1–14.
  • K. Iwasawa, On solvable extensions of algebraic number fields, Ann. of Math. (2), 58 (1953), 548–572.
  • K. Iwasawa, Sheaves for algebraic number fields, Ann. of Math. (2), 69 (1959), 408–413.
  • M. Kurihara, On the ideal class groups of the maximal real subfields of number fields with all roots of unity, J. Eur. Math. Soc. (JEMS), 1 (1999), 35–49.
  • H. Reichardt, Konstruktion von Zahlkörpern mit gegebener Galoisgruppe von Primzahlpotenzordnung, J. Reine Angew. Math., 177 (1937), 1–5.
  • J.-P. Serre, Cohomologie Galoisienne. 5th ed., Lecture Notes in Math., 5, Springer-Verlag, Berlin, 1994.
  • I. R. Shafarevich, On the construction of fields with a given Galois group of order $l^{\alpha}$, Izv. Akad. Nauk SSSR Ser. Mat., 18 (1954), 261–296.
  • K. Uchida, Galois groups of unramified solvable extensions, Tohoku Math. J. (2), 34 (1982), 311–317.