Journal of the Mathematical Society of Japan

Unique solvability of some nonlinear partial differential equations with Fuchsian and irregular singularities

Dennis B. BACANI and Hidetoshi TAHARA

Full-text: Open access

Abstract

The paper considers nonlinear partial differential equations of the form $t (\partial u/\partial t) = F(t,x,u, \partial u/\partial x)$, with independent variables $(t,x) \in \mathbb{R} \times \mathbb{C}$, and where $F(t,x,u,v)$ is a function continuous in $t$ and holomorphic in the other variables. It is shown that the equation has a unique solution in a sectorial domain centered at the origin under the condition that $F(0,x,0,0)=0$, Re$F_u(0,0,0,0)$ < 0, and $F_v(0,x,0,0)=x^{p+1}\gamma(x)$, where $\gamma(0) \neq 0$ and $p$ is any positive integer. In this case, the equation has a Fuchsian singularity at $t=0$ and an irregular singularity at $x=0$.

Article information

Source
J. Math. Soc. Japan, Volume 66, Number 3 (2014), 1017-1042.

Dates
First available in Project Euclid: 24 July 2014

Permanent link to this document
https://projecteuclid.org/euclid.jmsj/1406206982

Digital Object Identifier
doi:10.2969/jmsj/06631017

Mathematical Reviews number (MathSciNet)
MR3238327

Zentralblatt MATH identifier
1302.35010

Subjects
Primary: 35A01: Existence problems: global existence, local existence, non-existence
Secondary: 35A10: Cauchy-Kovalevskaya theorems 35A20: Analytic methods, singularities 35F20: Nonlinear first-order equations

Keywords
nonlinear partial differential equations Fuchsian singularity irregular singularity existence and uniqueness of solutions

Citation

BACANI, Dennis B.; TAHARA, Hidetoshi. Unique solvability of some nonlinear partial differential equations with Fuchsian and irregular singularities. J. Math. Soc. Japan 66 (2014), no. 3, 1017--1042. doi:10.2969/jmsj/06631017. https://projecteuclid.org/euclid.jmsj/1406206982


Export citation

References

  • D. B. Bacani and H. Tahara, Existence and uniqueness theorem for a class of singular nonlinear partial differential equations, Publ. Res. Inst. Math. Sci., 48 (2012), 899–917.
  • M. S. Baouendi and C. Goulaouic, Singular nonlinear Cauchy problems, J. Differential Equations, 22 (1976), 268–291.
  • H. Chen and H. Tahara, On totally characteristic type non-linear partial differential equations in the complex domain, Publ. Res. Inst. Math. Sci., 35 (1999), 621–636.
  • H. Chen, Z. Luo and H. Tahara, Formal solutions of nonlinear first order totally characteristic type PDE with irregular singularity, Ann. Inst. Fourier (Grenoble), 51 (2001), 1599–1620.
  • R. Gérard and H. Tahara, Holomorphic and singular solutions of nonlinear singular first order partial differential equations, Publ. Res. Inst. Math. Sci., 26 (1990), 979–1000.
  • P. Hartman, Ordinary Differential Equations. 2nd ed., Birkhäuser, Boston, 1982.
  • J. E. C. Lope, M. P. Roque and H. Tahara, On the unique solvability of certain nonlinear singular partial differential equations, Z. Anal. Anwend., 31 (2012), 291–305.
  • Z. Luo, H. Chen and C. Zhang, Exponential-type Nagumo norms and summability of formal solutions of singular partial differential equations, Ann. Inst. Fourier (Grenoble), 62 (2012), 571–618.
  • M. Nagumo, Über das Anfangswertproblem Partieller Differentialgleichungen, Japan. J. Math., 18 (1941), 41–47.
  • L. Nirenberg, An abstract form of the nonlinear Cauchy-Kowalewski theorem, J. Differential Geometry, 6 (1972), 561–576.
  • T. Nishida, A note on a theorem of Nirenberg, J. Differential Geom., 12 (1977), 629–633.
  • H. Tahara, Solvability of partial differential equations of nonlinear totally characteristic type with resonances, J. Math. Soc. Japan, 55 (2003), 1095–1113.
  • W. Walter, An elementary proof of the Cauchy-Kowalevsky theorem, Amer. Math. Monthly, 92 (1985), 115–126.
  • H. Yamazawa, Singular solutions of the Briot-Bouquet type partial differential equations, J. Math. Soc. Japan, 55 (2003), 617–632.