Journal of the Mathematical Society of Japan

The singular locus of Lauricella's $F_C$

Ryohei HATTORI and Nobuki TAKAYAMA

Full-text: Open access

Abstract

We determine the singular locus of the holonomic system of differential equations annihilating Lauricella's hypergeometric function $F_C$ by the theory of $D$-modules and of Gröbner bases. We also study the $A$-hypergeometric system associated to $F_C$.

Article information

Source
J. Math. Soc. Japan, Volume 66, Number 3 (2014), 981-995.

Dates
First available in Project Euclid: 24 July 2014

Permanent link to this document
https://projecteuclid.org/euclid.jmsj/1406206980

Digital Object Identifier
doi:10.2969/jmsj/06630981

Mathematical Reviews number (MathSciNet)
MR3238325

Zentralblatt MATH identifier
1312.33043

Subjects
Primary: 33C65: Appell, Horn and Lauricella functions
Secondary: 14F10: Differentials and other special sheaves; D-modules; Bernstein-Sato ideals and polynomials [See also 13Nxx, 32C38] 32C38: Sheaves of differential operators and their modules, D-modules [See also 14F10, 16S32, 35A27, 58J15]

Keywords
Lauricella's hypergeometric differential equation singular locus $D$-module Gröbner basis $A$-hypergeometric systems

Citation

HATTORI, Ryohei; TAKAYAMA, Nobuki. The singular locus of Lauricella's $F_C$. J. Math. Soc. Japan 66 (2014), no. 3, 981--995. doi:10.2969/jmsj/06630981. https://projecteuclid.org/euclid.jmsj/1406206980


Export citation

References

  • F. Beukers, Irreducibility of $A$-hypergeometric systems, Indag. Math. (N.S.), 21 (2011), 30–39.
  • S. C. Countinho, A Primer of Algebraic $D$-Modules, London Math. Soc. Stud. Texts, 33, Cambridge University Press, Cambridge, 1995.
  • A. Dickenstein, L. F. Matusevich and E. Miller, Binomial $D$-modules, Duke Math. J., 151 (2010), 385–429.
  • I. M. Gel'fand, A. V. Zelevinsky and M. M. Kapranov, Hypergeometric functions and toral manifolds, Funct. Anal. Appl., 23 (1989), 94–106.
  • I. M. Gel'fand, M. M. Kapranov and A. V. Zelevinsky, Discriminants, Resultants, and Multidimensional Determinants, Math. Theory Appl., Birkhäuser, Boston, MA, 1994.
  • R. Hotta, Equivariant $D$-modules..
  • J. Kaneko, Monodromy group of Appell's system $(F_4)$, Tokyo J. Math., 4 (1981), 35–54.
  • M. Kashiwara, On the maximally overdetermined system of linear differential equations. I, Publ. Res. Inst. Math. Sci., 10 (1975), 563–579.
  • T. Oaku, Computation of the characteristic variety and the singular locus of a system of differential equations with polynomial coefficients, Japan J. Indust. Appl. Math., 11 (1994), 485–497.
  • T. Oaku and N. Takayama, Algorithms for $D$-modules –- restriction, tensor product, localization, and local cohomology groups, J. Pure Appl. Algebra, 156 (2001), 267–308.
  • M. Saito, Contiguity relations for the Lauricella functions, Funkcial. Ekvac., 38 (1995), 37–58.
  • M. Saito, B. Sturmfels and N. Takayama, Gröbner Deformations of Hypergeometric Differential Equations, Algorithms Comput. Math., 6, Springer-Verlag, Berlin, 2000.
  • M. Schulze and U. Walther, Resonance equals reducibility for $A$-hypergeometric systems, Algebra Number Theory, 6 (2012), 527–537.
  • N. Takayama, An Algorithm of Constructing Cohomological Series Solutions of Holonomic Systems, Journal of Japan Society for Symbolic and Algebraic Computation, 10 (2004), 2–11.
  • T. Yoshida, On the system of differential equations for the hypergeometric function $F_C$, master thesis, Kobe University, 1999.