Journal of the Mathematical Society of Japan

Geometry of nondegenerate ${\mathbb R}^n$-actions on $n$-manifolds

Nguyen VAN MINH and Nguyen Tien ZUNG

Full-text: Open access

Abstract

This paper is devoted to a systematic study of the geometry of nondegenerate ${\mathbb R}^n$-actions on $n$-manifolds. The motivations for this study come from both dynamics, where these actions form a special class of integrable dynamical systems and the understanding of their nature is important for the study of other Hamiltonian and non-Hamiltonian integrable systems, and geometry, where these actions are related to a lot of other geometric objects, including reflection groups, singular affine structures, toric and quasi-toric manifolds, monodromy phenomena, topological invariants, etc. We construct a geometric theory of these actions, and obtain a series of results, including: local and semi-local normal forms, automorphism and twisting groups, the reflection principle, the toric degree, the monodromy, complete fans associated to hyperbolic domains, quotient spaces, elbolic actions and toric manifolds, existence and classification theorems.

Article information

Source
J. Math. Soc. Japan, Volume 66, Number 3 (2014), 839-894.

Dates
First available in Project Euclid: 24 July 2014

Permanent link to this document
https://projecteuclid.org/euclid.jmsj/1406206975

Digital Object Identifier
doi:10.2969/jmsj/06630839

Mathematical Reviews number (MathSciNet)
MR3238320

Zentralblatt MATH identifier
1339.37043

Subjects
Primary: 53C15: General geometric structures on manifolds (almost complex, almost product structures, etc.)
Secondary: 58K50: Normal forms 37J35: Completely integrable systems, topological structure of phase space, integration methods 37C85: Dynamics of group actions other than Z and R, and foliations [See mainly 22Fxx, and also 57R30, 57Sxx] 58K45: Singularities of vector fields, topological aspects 37J15: Symmetries, invariants, invariant manifolds, momentum maps, reduction [See also 53D20]

Keywords
integrable system toric manifold group action reflection principle normal form complete fan hyperbolic elbolic monodromy

Citation

ZUNG, Nguyen Tien; VAN MINH, Nguyen. Geometry of nondegenerate ${\mathbb R}^n$-actions on $n$-manifolds. J. Math. Soc. Japan 66 (2014), no. 3, 839--894. doi:10.2969/jmsj/06630839. https://projecteuclid.org/euclid.jmsj/1406206975


Export citation

References

  • M. Ayoul and N. T. Zung, Galoisian obstructions to non-Hamiltonian integrability, C. R. Math. Acad. Sci. Paris, 348 (2010), 1323–1326.
  • J. L. Arraut and C. Maquera, On the orbit structure of ${\mathbb R}^n$-actions on $n$-manifolds, Qual. Theory Dyn. Syst., 4 (2004), 169–180.
  • M. Audin, Torus Actions on Symplectic Manifolds. 2nd revised ed., Progr. Math., 93, Birkhäuser Verlag, Basel, 2004.
  • O. Babelon, D. Bernard and M. Talon, Introduction to Classical Integrable Systems, Cambridge Monogr. Math. Phys., Cambridge University Press, Cambridge, 2003.
  • D. Barnette, Diagrams and Schlegel diagrams, In: Combinatorial Structures and Their Applications, Proc. Calgary Internat. Conf., Calgary, Alta., 1969, (eds. R. Guy and H. Hanani et al.), Gordon and Breach, New York, 1970, pp.,1–4.
  • L. Bates and R. Cushman, What is a completely integrable nonholonomic dynamical system?, In: Proceedings of the XXX Symposium on Mathematical Physics, Torun', 1998, (eds. A. Jamiołkowski, M. Michalski and R. Mrugała), Rep. Math. Phys., 44, 1999, Pergamon Press, Oxford, pp.,29–35.
  • O. I. Bogoyavlenskij, Extended integrability and bi-hamiltonian systems, Comm. Math. Phys., 196 (1998), 19–51.
  • A. V. Bolsinov and A. T. Fomenko, Integrable Hamiltonian Systems: Geometry, Topology, Classification, Chapman & Hall/CRC, 2004.
  • A. V. Bolsinov, A. T. Fomenko and A. A. Oshemkov, eds., Topological Methods in the Theory of Integrable Systems, Cambridge Scientific Publishers, Cambridge, 2006.
  • V. M. Buchstaber and T. E. Panov, Torus Actions and Their Applications in Topology and Combinatorics, Univ. Lecture Ser., 24, Amer. Math. Soc., Providence, RI, 2002.
  • C. Camacho, Morse-Smale $R^2$-actions on two-manifolds, In: Dynamical Systems, Proc. Sympos., Univ. Bahia, Salvador, 1971, (ed. M. M. Peixoto), Academic Press, New York, 1973, pp.,71–74.
  • C. Camacho and A. Lins Neto, Geometric Theory of Foliations, Birkhäuser, Boston, MA, 1985.
  • S. Choi, M. Masuda and D. Y. Suh, Rigidity problems in toric topology: a survey, Proc. Steklov Inst. Math., 275 (2011), 177–190.
  • D. A. Cox, J. Little and H. Schenk, Toric Varieties, Grad. Stud. Math., 124, Amer. Math. Soc., Providence, RI, 2011.
  • R. Cushman and J. J. Duistermaat, Non-Hamiltonian monodromy, J. Differential Equations, 172 (2001), 42–58.
  • M. W. Davis and T. Januszkiewicz, Convex polytopes, Coxeter orbifolds and torus actions, Duke Math. J., 62 (1991), 417–451.
  • J.-P. Dufour and P. Molino, Compactification d'actions de $\mathbb R^n$ et variables action-angle avec singularités, Publ. Dép. Math. Nouvelle Sér. B, 88 (1988), 161–183.
  • J. J. Duistermaat, On global action-angle coordinates, Comm. Pure Appl. Math., 33 (1980), 687–706.
  • L. H. Eliasson, Normal forms for Hamiltonian systems with Poisson commuting integrals–-elliptic case, Comment. Math. Helv., 65 (1990), 4–35.
  • G. Ewald, Combinatorial Convexity and Algebraic Geometry, Grad. Texts in Math., 168, Springer-Verlag, New York, 1996.
  • Y. N. Fedorov and B. Jovanović, Quasi-Chaplygin systems and nonholonimic rigid body dynamics, Lett. Math. Phys., 76 (2006), 215–230.
  • R. Fintushel, Circle actions on simply connected 4-manifolds, Trans. Amer. Math. Soc., 230 (1977), 147–171.
  • A. T. Fomenko, A Morse theory for integrable Hamiltonian systems, Soviet Math. Dokl., 33 (1986), 502–506.
  • M. Gross and B. Siebert, From real affine geometry to complex geometry, Ann. of Math. (2), 174 (2011), 1301–1428.
  • A. Hattori and M. Masuda, Theory of multi-fans, Osaka J. Math., 40 (2003), 1–68.
  • H. Ishida, Invariant stably complex structures on topological toric manifolds, Osaka J. Math., 50 (2013), 795–806.
  • H. Ishida, Y. Fukukawa and M. Masuda, Topological toric manifolds, Mosc. Math. J., 13 (2013), 57–98, 189–190.
  • T. Kappeler and J. Pöschel, KdV & KAM, Ergeb. Math. Grenzqeb. (3), 45, Springer-Verlag, 2003.
  • M. Kontsevich and Y. Soibelman, Affine structures and non-Archimedean analytic spaces, In: The Unity of Mathematics, (eds. Pavel Etingof, Vladimir Retakh and I. M. Singer), Progr. Math., 244, Birkhäuser Boston, Boston, MA, 2006, pp.,321–385.
  • W. H. Jaco and P. B. Shalen, Seifert Fibered Spaces in 3-Manifolds, Mem. Amer. Math. Soc., 21, no.,220, Amer. Math. Soc., Providence, RI, 1979.
  • E. Miranda and N. T. Zung, Equivariant normal form for nondegenerate singular orbits of integrable Hamiltonian systems, Ann. Sci. École Norm. Sup. (4), 37 (2004), 819–839.
  • J. Morales-Ruiz, J.-P. Ramis and C. Simo, Integrability of Hamiltonian systems and differential Galois groups of higher variational equations, Ann. Sci. École Norm. Sup. (4), 40 (2007), 845–884.
  • P. Orlik and F. Raymond, Actions of the torus on 4-manifolds. I, Trans. Amer. Math. Soc., 152 (1970), 531–559.
  • P. Orlik and F. Raymond, Actions of the torus on 4-manifolds. II, Topology, 13 (1974), 89–112.
  • P. S. Pao, The topological structure of 4-manifolds with effective torus actions. I, Trans. Amer. Math. Soc., 227 (1977), 279–317.
  • Á. Pelayo and S. V. Ngoc, Constructing integrable systems of semitoric type, Acta Math., 206 (2011), 93–125.
  • M. Sabatini, Dynamics of commuting systems on two-dimensional manifolds, Ann. Mat. Pura Appl. (4), 173 (1997), 213–232.
  • L. Stolovitch, Singular complete integrability, Inst. Hautes Études Sci. Publ. Math., 91 (2000), 133–210.
  • J. Vey, Sur certains systèmes dynamiques séparables, Amer. J. Math., 100 (1978), 591–614.
  • A. Weinstein, Poisson geometry of the principal series and nonlinearizable structures, J. Differential Geom., 25 (1987), 55–73.
  • L. Yu, On transition functions of topological toric manifolds, Dal'nevost. Mat. Zh., 12 (2012), 35–47.
  • N. T. Zung, Symplectic topology of integrable Hamiltonian systems. I, Arnold-Liouville with singularities, Compositio Math., 101 (1996), 179–215.
  • N. T. Zung, Convergence versus integrability in Poincaré-Dulac normal form, Math. Res. Lett., 9 (2002), 217–228.
  • N. T. Zung, Symplectic topology of integrable Hamiltonian systems. II, Topological classification, Compositio Math., 138 (2003), 125–156.
  • N. T. Zung, Convergence versus integrability in Birkhoff normal form, Ann. of Math. (2), 161 (2005), 141–156.
  • N. T. Zung, Nondegenerate singularities of integrable dynamical systems, Ergodic Theory Dynam. Systems.