Journal of the Mathematical Society of Japan

The Gottlieb group of a wedge of suspensions

Martin ARKOWITZ and Ken-ichi MARUYAMA

Full-text: Open access


We study the Gottlieb group of a wedge sum of suspension spaces. We give necessary and sufficient conditions, in terms of Hopf invariants, for an element of a homotopy group to be in the Gottlieb group. We apply our results to wedge sums of spheres and to Moore spaces.

Article information

J. Math. Soc. Japan, Volume 66, Number 3 (2014), 735-743.

First available in Project Euclid: 24 July 2014

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 55Q20: Homotopy groups of wedges, joins, and simple spaces
Secondary: 55Q25: Hopf invariants

homotopy groups Gottlieb groups wedge sums Hopf invariants Whitehead products


ARKOWITZ, Martin; MARUYAMA, Ken-ichi. The Gottlieb group of a wedge of suspensions. J. Math. Soc. Japan 66 (2014), no. 3, 735--743. doi:10.2969/jmsj/06630735.

Export citation


  • M. Arkowitz, The generalized Whitehead product, Pacific J. Math., 12 (1962), 7–23.
  • W. D. Barcus and M. G. Barratt, On the homotopy classification of the extensions of a fixed map, Trans. Amer. Math. Soc., 88 (1958), 57–74.
  • Y. Félix, S. Halperin and J.-C. Thomas, Rational Homotopy Theory, Grad. Texts in Math., 205, Springer-Verlag, 2001.
  • M. Golasiński and J. Mukai, Gottlieb groups of spheres, Topology, 47 (2008), 399–430.
  • D. H. Gottlieb, Evaluation subgroups of homotopy groups, Amer. J. Math., 91 (1969), 729–756.
  • P. J. Hilton, On the homotopy groups of the union of spheres, J. London Math. Soc., 30 (1955), 154–171.
  • H. Toda, Composition Methods in Homotopy Groups of Spheres, Ann. of Math. Stud., 49, Princeton University Press, Princeton, N.J., 1962.
  • G. W. Whitehead, Elements of Homotopy Theory, Grad. Texts in Math., 61, Springer-Verlag, 1978.