Journal of the Mathematical Society of Japan

Partition calculus and cardinal invariants

Shimon GARTI and Saharon SHELAH

Full-text: Open access

Abstract

We prove that the strong polarized relation $\binom{\theta}{\omega} \rightarrow \binom{\theta}{\omega}^{1,1}_2$, applied simultaneously for every $\theta\in[\aleph_1,2^{\aleph_0}]$, is consistent with ZFC. Consequently, $\binom{inv}{\omega} \rightarrow \binom{inv}{\omega}^{1,1}_2$ is consistent for every cardinal invariant of the continuum. Some results in this direction are generalized to higher cardinals.

Nous prouvons que la relation polarisée forte $\binom{\theta}{\omega} \rightarrow \binom{\theta}{\omega}^{1,1}_2$, appliquée simultanément à chaque cardinal $\theta\in[\aleph_1,2^{\aleph_0}]$, est en accord avec ZFC. Par conséquent, la relation $\binom{inv}{\omega} \rightarrow \binom{inv}{\omega}^{1,1}_2$ est en accord avec ZFC pour chaque caractéristique sur le continu. Nous étudions plusieurs généralisations pour certains cardinaux élevés.

Article information

Source
J. Math. Soc. Japan, Volume 66, Number 2 (2014), 425-434.

Dates
First available in Project Euclid: 23 April 2014

Permanent link to this document
https://projecteuclid.org/euclid.jmsj/1398258178

Digital Object Identifier
doi:10.2969/jmsj/06620425

Mathematical Reviews number (MathSciNet)
MR3201820

Zentralblatt MATH identifier
1322.03033

Subjects
Primary: 03E02: Partition relations
Secondary: 03E04: Ordered sets and their cofinalities; pcf theory 03E05: Other combinatorial set theory 03E17: Cardinal characteristics of the continuum 03E35: Consistency and independence results

Keywords
partition calculus cardinal characteristics

Citation

GARTI, Shimon; SHELAH, Saharon. Partition calculus and cardinal invariants. J. Math. Soc. Japan 66 (2014), no. 2, 425--434. doi:10.2969/jmsj/06620425. https://projecteuclid.org/euclid.jmsj/1398258178


Export citation

References

  • A. Blass, Combinatorial cardinal characteristics of the continuum, In: Handbook of Set Theory. Vols.,1, 2, 3, Springer, Dordrecht, 2010, pp.,395–489.
  • A. Blass and S. Shelah, There may be simple $P_{\aleph_1}$- and $P_{\aleph_2}$-points and the Rudin-Keisler ordering may be downward directed, Ann. Pure Appl. Logic, 33 (1987), 213–243.
  • A. Blass and S. Shelah, Ultrafilters with small generating sets, Israel J. Math., 65 (1989), 259–271.
  • J. Brendle and D. Raghavan, Bounding, Splitting, and almost disjointness, Ann. Pure Appl. Logic, 165 (2014), 631–651.
  • A. D. Brooke-Taylor, Small $\mathfrak{u}_\kappa$ and large $2^\kappa$ for supercompact $\kappa$, arXiv:1206.4161.
  • M. Džamonja and S. Shelah, Universal graphs at the successor of a singular cardinal, J. Symbolic Logic, 68 (2003), 366–388.
  • P. Erdős, A. Hajnal and R. Rado, Partition relations for cardinal numbers, Acta Math. Acad. Sci. Hungar., 16 (1965), 93–196.
  • P. Erdős and R. Rado, A partition calculus in set theory, Bull. Amer. Math. Soc., 62 (1956), 427–489.
  • S. Garti, Infinite combinatorics, Doctoral thesis (in Hebrew), The Hebrew University, Jerusalem, Israel, 2011.
  • S. Garti, M. Magidor and S. Shelah, On the spectrum of characters of ultrafilters, preprint.
  • S. Garti and S. Shelah, Combinatorial aspects of the splitting number, Ann. Comb., 16 (2012), 709–717.
  • S. Garti and S. Shelah, A strong polarized relation, J. Symbolic Logic, 77 (2012), 766–776.
  • S. Garti and S. Shelah, Strong polarized relations for the continuum, Ann. Comb., 16 (2012), 271–276.
  • S. Garti and S. Shelah, The ultrafilter number for singular cardinals, Acta Math. Hungar., 137 (2012), 296–301.
  • M. Gitik, Blowing up power of a singular cardinal–-wider gaps, Ann. Pure Appl. Logic, 116 (2002), 1–38.
  • A. Hajnal and J. L. Larson, Partition Relations, In: Handbook of Set Theory. Vols.,1, 2, 3, Springer, Dordrecht, 2010, pp.,129–213.
  • S. Shelah, Proper and Improper Forcing. second ed., Perspect. Math. Logic, Springer-Verlag, Berlin, 1998.
  • E. K. van Douwen, The integers and topology, In: Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984, pp.,111–167.
  • N. H. Williams, Combinatorial Set Theory, studies in logic and the foundations of mathematics, vol.,91, North-Holland publishing company, Amsterdam, New York, Oxford, 1977.
  • J. Zapletal, Splitting number at uncountable cardinals, J. Symbolic Logic, 62 (1997), 35–42.