Journal of the Mathematical Society of Japan

Whittaker functions associated to newforms for $GL(n)$ over $p$-adic fields

Michitaka MIYAUCHI

Full-text: Open access


Let $F$ be a non-Archimedean local field of characteristic zero. Jacquet, Piatetski-Shapiro and Shalika introduced the notion of newforms for irreducible generic representations of $GL_n(F)$. In this paper, we give an explicit formula for Whittaker functions associated to newforms on the diagonal matrices in $GL_n(F)$.

Article information

J. Math. Soc. Japan, Volume 66, Number 1 (2014), 17-24.

First available in Project Euclid: 24 January 2014

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 22E50: Representations of Lie and linear algebraic groups over local fields [See also 20G05]
Secondary: 22E35: Analysis on $p$-adic Lie groups

local newform Whittaker function


MIYAUCHI, Michitaka. Whittaker functions associated to newforms for $GL(n)$ over $p$-adic fields. J. Math. Soc. Japan 66 (2014), no. 1, 17--24. doi:10.2969/jmsj/06610017.

Export citation


  • I. N. Bernšteĭn and A. V. Zelevinskiĭ, Representations of the group $GL(n,F)$, where $F$ is a local non-Archimedean field, Uspehi Mat. Nauk, 31, no.,3 (1976), 5–70.
  • D. Bump and S. Friedberg, The exterior square automorphic $L$-functions on $GL(n)$, In: Festschrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday, Part II (Ramat Aviv, 1989), Israel Math. Conf. Proc., 3, Weizmann, Jerusalem, 1990, pp.,47–65.
  • D. Bump and D. Ginzburg, Symmetric square $L$-functions on $GL(r)$, Ann. of Math. (2), 136 (1992), 137–205.
  • W. Casselman, On some results of Atkin and Lehner, Math. Ann., 201 (1973), 301–314.
  • R. Godement and H. Jacquet, Zeta Functions of Simple Algebras, Lecture Notes in Math., 260, Springer-Verlag, Berlin, 1972.
  • H. Jacquet, Principal $L$-functions of the linear group, In: Automorphic forms, representations and $L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, RI, 1979, pp.,63–86.
  • H. Jacquet, I. Piatetski-Shapiro and J. Shalika, Conducteur des représentations du groupe linéaire, Math. Ann., 256 (1981), 199–214.
  • H. Jacquet, I. I. Piatetskii-Shapiro and J. A. Shalika, Rankin-Selberg convolutions, Amer. J. Math., 105 (1983), 367–464.
  • S. Kondo and S. Yasuda, Local $L$ and epsilon factors in Hecke eigenvalues, J. Number Theory, 132 (2012), 1910–1948.
  • I. G. Macdonald, Symmetric Functions and Hall Polynomials. Second ed., With contributions by A. Zelevinsky, Oxford Math. Monogr., Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1995.
  • N. Matringe, Essential Whittaker functions for $GL(n)$, Documenta Math., 18 (2013), 1191–1214.
  • T. Shintani, On an explicit formula for class-1 “Whittaker functions” on $GL_n$ over $\mathfrak{P}$-adic fields, Proc. Japan Acad., 52 (1976), 180–182.