Journal of the Mathematical Society of Japan

An integration by parts formula for Feynman path integrals

Daisuke FUJIWARA

Full-text: Open access

Abstract

We are concerned with rigorously defined, by time slicing approximation method, Feynman path integral $\int_{\Omega_{x,y}} F(\gamma) e^{i\nu S(\gamma)} {\cal D}(\gamma)$ of a functional $F(\gamma)$, cf. [13]. Here $\Omega_{x,y}$ is the set of paths $\gamma(t)$ in R$^d$ starting from a point $y \in$ R$^d$ at time $0$ and arriving at $x\in$ R$^d$ at time $T$, $S(\gamma)$ is the action of $\gamma$ and $\nu=2\pi h^{-1}$, with Planck's constant $h$. Assuming that $p(\gamma)$ is a vector field on the path space with suitable property, we prove the following integration by parts formula for Feynman path integrals:

$ \int_{\Omega_{x,y}}DF(\gamma)[p(\gamma)]e^{i\nu S(\gamma)} {\cal D}(\gamma) $

$ = -\int_{\Omega_{x,y}} F(\gamma) {\rm Div}\, p(\gamma) e^{i\nu S(\gamma)} {\cal D}(\gamma) -i\nu \int_{\Omega_{x,y}} F(\gamma)DS(\gamma)[p(\gamma)]e^{i\nu S(\gamma)}{\cal D}(\gamma). $ (1)

Here $DF(\gamma)[p(\gamma)]$ and $DS(\gamma)[p(\gamma)]$ are differentials of $F(\gamma)$ and $S(\gamma)$ evaluated in the direction of $p(\gamma)$, respectively, and ${\rm Div}\, p(\gamma)$ is divergence of vector field $p(\gamma)$. This formula is an analogy to Elworthy's integration by parts formula for Wiener integrals, cf. [1]. As an application, we prove a semiclassical asymptotic formula of the Feynman path integrals which gives us a sharp information in the case $F(\gamma^*)=0$. Here $\gamma^*$ is the stationary point of the phase $S(\gamma)$.

Article information

Source
J. Math. Soc. Japan Volume 65, Number 4 (2013), 1273-1318.

Dates
First available in Project Euclid: 24 October 2013

Permanent link to this document
https://projecteuclid.org/euclid.jmsj/1382620193

Digital Object Identifier
doi:10.2969/jmsj/06541273

Mathematical Reviews number (MathSciNet)
MR3127824

Zentralblatt MATH identifier
1286.81132

Subjects
Primary: 81S40: Path integrals [See also 58D30]
Secondary: 35A08: Fundamental solutions 46T12: Measure (Gaussian, cylindrical, etc.) and integrals (Feynman, path, Fresnel, etc.) on manifolds [See also 28Cxx, 46G12, 60-XX] 58D30: Applications (in quantum mechanics (Feynman path integrals), relativity, fluid dynamics, etc.) 81Q20: Semiclassical techniques, including WKB and Maslov methods

Keywords
Feynman path integrals integration by parts quantum mechanics Feynman propagator Schrödinger equation semiclassical techniques Wiener integrals

Citation

FUJIWARA, Daisuke. An integration by parts formula for Feynman path integrals. J. Math. Soc. Japan 65 (2013), no. 4, 1273--1318. doi:10.2969/jmsj/06541273. https://projecteuclid.org/euclid.jmsj/1382620193


Export citation

References

  • K. D. Elworthy, Gaussian measures on Banach spaces and manifolds, In: Global Analysis and its Applications. Vol.,II, Lectures International Semi. Course, International Center ofTheoretical Physics, Trieste, 1972, Internat. Atomic Energy Agency, Vienna, 1974, pp. 151–166.
  • R. P. Feynman, Space-time approach to non-relativistic quantum mechanics, Rev. Modern Physics, 20 (1948), 367–387.
  • D. Fujiwara, A construction of the fundamental solution for the Schrödinger equation, J. Analyse Math., 35 (1979), 41–96.
  • D. Fujiwara, Remarks on convergence of the Feynman path integrals, Duke Math. J., 47 (1980), 559–600.
  • D. Fujiwara, The stationary phase method with an estimate of the remainder term on a space of large dimension, Nagoya Math. J., 124 (1991), 61–97.
  • D. Fujiwara, Mathematical method for Feynman path integrals, Springer Tokyo, in Japanese, 1999.
  • D. Fujiwara and N. Kumano-go, Smooth functional derivatives in Feynman path integrals by time slicing approximation, Bull. Sci. Math., 129 (2005), 57–79.
  • D. Fujiwara and N. Kumano-go, An improved remainder estimate of stationary phase method for some oscillatory integrals over a space of large dimension, Funkcial. Ekvac., 49 (2006), 59–86.
  • D. Fujiwara and N. Kumano-go, The second term of the semi-classical asymptotic expansion for Feynman path integrals with integrand of polynomial growth, J. Math. Soc. Japan, 58 (2006), 837–867.
  • D. Fujiwara and T. Tsuchida, The time slicing approximation of the fundamental solution for the Schrödinger equation with electromagnetic fields, J. Math. Soc. Japan, 49 (1997), 299–327.
  • L. Hörmander, Fourier integral operators. I, Acta Math., 127 (1971), 79–183.
  • L. Hörmander, The Analysis of Linear Partial Differential Operators. I, Springer-Verlag, Berlin, 1983.
  • N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation, Bull. Sci. Math., 128 (2004), 197–251.
  • H. H. Kuo, Integration theory on infinite-dimensional manifolds, Trans. Amer. Math. Soc., 159 (1971), 57–78.
  • C. Morette, On the definition and approximation of Feynman's path integrals, Physical Rev. (2), 81 (1951), 848–852.