Journal of the Mathematical Society of Japan

Hilbert scheme of some threefold scrolls over the Hirzebruch surface ${\mathbb F}_1$

Gian Mario BESANA, Maria Lucia FANIA, and Flaminio FLAMINI

Full-text: Open access

Abstract

Hilbert schemes of suitable smooth, projective manifolds of low degree which are 3-fold scrolls over the Hirzebruch surface $\mathbb{F}_1$ are studied. An irreducible component of the Hilbert scheme parametrizing such varieties is shown to be generically smooth of the expected dimension and the general point of such a component is described.

Article information

Source
J. Math. Soc. Japan, Volume 65, Number 4 (2013), 1243-1272.

Dates
First available in Project Euclid: 24 October 2013

Permanent link to this document
https://projecteuclid.org/euclid.jmsj/1382620192

Digital Object Identifier
doi:10.2969/jmsj/06541243

Mathematical Reviews number (MathSciNet)
MR3127823

Zentralblatt MATH identifier
1284.14050

Subjects
Primary: 14J30: $3$-folds [See also 32Q25] 14M07: Low codimension problems 14N25: Varieties of low degree
Secondary: 14N30: Adjunction problems

Keywords
Hilbert scheme special threefolds vector bundles ruled varieties

Citation

BESANA, Gian Mario; FANIA, Maria Lucia; FLAMINI, Flaminio. Hilbert scheme of some threefold scrolls over the Hirzebruch surface ${\mathbb F}_1$. J. Math. Soc. Japan 65 (2013), no. 4, 1243--1272. doi:10.2969/jmsj/06541243. https://projecteuclid.org/euclid.jmsj/1382620192


Export citation

References

  • A. Alzati and G. M. Besana, Criteria for very ampleness of rank-two vector bundles over ruled surfaces, Canad. J. Math., 62 (2010), 1201–1227.
  • M. Beltrametti and A. J. Sommese, The Adjunction Theory of Complex Projective Varieties, de Gruyter Exp. Math., 16, Walter de Gruyter & Co., Berlin, 1995.
  • G. M. Besana and A. Biancofiore, Degree eleven manifolds of dimension greater than or equal to three, Forum Math., 17 (2005), 711–733.
  • G. M. Besana and M. L. Fania, The dimension of the Hilbert scheme of special threefolds, Comm. Algebra, 33 (2005), 3811–3829.
  • F. Bogomolov, Stable vector bundles on projective surfaces, Russian Acad. Sci. Sb. Math., 81 (1995), 397–419.
  • A. Calabri, C. Ciliberto, F. Flamini and R. Miranda, Non-special scrolls with general moduli, Rend. Circ. Mat. Palermo (2), 57 (2008), 1–31.
  • M.-C. Chang, The number of components of Hilbert schemes, Internat. J. Math., 7 (1996), 301–306.
  • M.-C. Chang, Inequidimensionality of Hilbert schemes, Proc. Amer. Math. Soc., 125 (1997), 2521–2526.
  • G. Ellingsrud, Sur le schéma de Hilbert des variétés de codimension 2 dans ${\bf P}^e$ a cône de Cohen-Macaulay, Ann. Sci. École Norm. Sup. (4), 8 (1975), 423–432.
  • D. Faenzi and M. L. Fania, Skew-symmetric matrices and Palatini scrolls, Math. Ann., 347 (2010), 859–883.
  • M. L. Fania and E. L. Livorni, Degree ten manifolds of dimension $n$ greater than or equal to 3, Math. Nachr., 188 (1997), 79–108.
  • M. L. Fania and E. Mezzetti, On the Hilbert scheme of Palatini threefolds, Adv. Geom., 2 (2002), 371–389.
  • R. Friedman. Algebraic Surfaces and Holomorphic Vector Bundles, Universitext, Springer-Verlag, New York, 1998.
  • A. Grothendieck, Techniques de construction et théorèmes d'existence en géométrie algébrique. IV: les schémas de Hilbert, Seminaire Bourbaki, Soc. Math. France Paris, 1995, pp.,249–276.
  • R. Hartshorne, Algebraic Geometry, Grad. Texts in Math., 52, Springer-Verlag, New York, 1977.
  • D. Huybrechts and M. Lehn, The Geometry of Moduli Spaces of Sheaves, A Publications of the Max-Plank-Institute für Mathematik, Bonn, Aspects Math., 31, Vieweg, Bonn, 1997.
  • J. O. Kleppe, J. C. Migliore, R. Miró-Roig, U. Nagel and C. Peterson, Gorenstein Liaison, Complete Intersection Liaison Invariants and Unobstructedness, Mem. Amer. Math. Soc., 154 Amer. Math. Soc., Providence RI, 2001.
  • J. O. Kleppe and R. M. Miró-Roig. The dimension of the Hilbert scheme of Gorenstein codimension 3 subschemes, J. Pure Appl. Algebra, 127 (1998), 73–82.
  • M. Maruyama, On automorphism groups of ruled surfaces, J. Math. Kyoto Univ., 11 (1971), 89–112.
  • C. Okonek, M. Schneider and H. Spindler, Vector Bundles on Complex Projective Spaces, Progr. Math., 3, Birkhäuser, Boston, 1980.
  • G. Ottaviani, On 3-folds in $\mathbb{P}^{5}$ which are scrolls, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 19 (1992), 451–471.
  • A. J. Sommese, On the minimality of hyperplane sections of projective threefolds, J. Reine Angew. Math., 329 (1981), 16–41.