Journal of the Mathematical Society of Japan

Geometric intersection of curves on punctured disks

S. Öykü YURTTAŞ

Full-text: Open access

Abstract

We give a recipe to compute the geometric intersection number of an integral lamination with a particular type of integral lamination on an $n$-times punctured disk. This provides a way to find the geometric intersection number of two arbitrary integral laminations when combined with an algorithm of Dynnikov and Wiest.

Article information

Source
J. Math. Soc. Japan, Volume 65, Number 4 (2013), 1153-1168.

Dates
First available in Project Euclid: 24 October 2013

Permanent link to this document
https://projecteuclid.org/euclid.jmsj/1382620190

Digital Object Identifier
doi:10.2969/jmsj/06541153

Mathematical Reviews number (MathSciNet)
MR3127821

Zentralblatt MATH identifier
1284.57022

Subjects
Primary: 57N16: Geometric structures on manifolds [See also 57M50]
Secondary: 57N37: Isotopy and pseudo-isotopy 57N05: Topology of $E^2$ , 2-manifolds

Keywords
geometric intersection Dynnikov coordinates

Citation

YURTTAŞ, S. Öykü. Geometric intersection of curves on punctured disks. J. Math. Soc. Japan 65 (2013), no. 4, 1153--1168. doi:10.2969/jmsj/06541153. https://projecteuclid.org/euclid.jmsj/1382620190


Export citation

References

  • E. Artin, Theorie der Zöpfe, Abh. Math. Sem. Univ. Hamburg, 4 (1925), 47–72.
  • E. Artin, Theory of braids, Ann. of Math. (2), 48 (1947), 101–126.
  • P. Dehornoy, Efficient solutions to braid isotopy problem..
  • P. Dehornoy, I. Dynnikov, D. Rolfsen and B. Wiest, Why Are Braids Orderable?, Panor. Syntheses, 14, Soc. Math. France, Paris, 2002.
  • I. A. Dynnikov, On a Yang-Baxter mapping and the Dehornoy ordering, Uspekhi Mat. Nauk, 57 (2002), 151–152.
  • I. Dynnikov and B. Wiest, On the complexity of braids, J. Eur. Math. Soc. (JEMS), 9 (2007), 801–840.
  • M. D. Finn and J.-L. Thiffeault, Topological entropy of braids on the torus, SIAM J. Appl. Dyn. Syst., 6 (2007), 79–98 (electronic).
  • T. Hall and S. Ö. Yurttaş, On the topological entropy of families of braids, Topology Appl., 156 (2009), 1554–1564.
  • J.-O. Moussafir, On computing the entropy of braids, Funct. Anal. Other Math., 1 (2006), 37–46.
  • R. C. Penner and J. L. Harer, Combinatorics of Train Tracks, Ann. of Math. Stud., 125, Princeton University Press, Princeton, NJ, 1992.