Journal of the Mathematical Society of Japan

The finite group action and the equivariant determinant of elliptic operators II

Kenji TSUBOI

Full-text: Open access

Abstract

Let $M$ be an almost complex manifold and $g$ a periodic automorphism of $M$ of order $p$. Then the rotation angles of $g$ around fixed points of $g$ are naturally defined by the almost complex structure of $M$. In this paper, under the assumption that the fixed points of $g^k$ $(1\leq k\leq p-1)$ are isolated, a calculation formula is provided for the homomorphism $I_D: {\Bbb Z}_p \to {\Bbb R}/{\Bbb Z}$ defined in [8]. The formula gives a new method to study the periodic automorphisms of almost complex manifolds. As examples of the application of the formula, we show the nonexistence of the ${\Bbb Z}_p$-action of specific isotropy orders and examine whether specific rotation angles exist or not.

Article information

Source
J. Math. Soc. Japan, Volume 65, Number 3 (2013), 797-827.

Dates
First available in Project Euclid: 23 July 2013

Permanent link to this document
https://projecteuclid.org/euclid.jmsj/1374586627

Digital Object Identifier
doi:10.2969/jmsj/06530797

Mathematical Reviews number (MathSciNet)
MR2114722

Zentralblatt MATH identifier
1276.58011

Subjects
Primary: 58J20: Index theory and related fixed point theorems [See also 19K56, 46L80]
Secondary: 57S17: Finite transformation groups

Keywords
finite group action elliptic operator almost complex manifold

Citation

TSUBOI, Kenji. The finite group action and the equivariant determinant of elliptic operators II. J. Math. Soc. Japan 65 (2013), no. 3, 797--827. doi:10.2969/jmsj/06530797. https://projecteuclid.org/euclid.jmsj/1374586627


Export citation

References

  • M. F. Atiyah and G. B. Segal, The index of elliptic operators. II, Ann. of Math. (2), 87 (1968), 531–545.
  • M. F. Atiyah and I. M. Singer, The index of elliptic operators. III, Ann. of Math. (2), 87 (1968), 546–604.
  • E. Bujalance, F. J. Cirre, J. M. Gamboa and G. Gromadzki, On compact Riemann surfaces with dihedral groups of automorphisms, Math. Proc. Cambridge Philos. Soc., 134 (2003), 465–477.
  • H. Glover and G. Mislin, Torsion in the mapping class group and its cohomology, J. Pure Appl. Algebra, 44 (1987), 177–189.
  • W. J. Harvey, Cyclic groups of automorphisms of a compact Riemann surface, Quart. J. Math. Oxford Ser. (2), 17 (1966), 86–97.
  • F. Hirzebruch, Topological Methods in Algebraic Geometry, 3rd ed., Grundlehren Math. Wiss., 131, Springer-Verlag, Berlin, Heidelberg, New York, 1966.
  • S. P. Kerckhoff, The Nielsen realization problem, Ann. of Math. (2), 117 (1983), 235–265.
  • K. Tsuboi, The finite group action and the equivariant determinant of elliptic operators, J. Math. Soc. Japan, 57 (2005), 95–113.
  • A. Van de Ven, On the Chern numbers of certain complex and almost complex manifolds, Proc. Natl. Acad. Sci. U.S.A., 55 (1966), 1624–1627.
  • D. B. Zagier, Equivariant Pontrjagin Classes and Applications to Orbit Spaces, Lecture Notes in Math., 290, Springer-Verlag, Berlin, Heidelberg, New York, 1972.