Journal of the Mathematical Society of Japan

Non-isolating 2-bondage in graphs

Marcin KRZYWKOWSKI

Full-text: Open access

Abstract

A 2-dominating set of a graph $G = (V,E)$ is a set $D$ of vertices of $G$ such that every vertex of $V(G) \setminus D$ has at least two neighbors in $D$. The 2-domination number of a graph $G$, denoted by $\gamma_2(G)$, is the minimum cardinality of a 2-dominating set of $G$. The non-isolating 2-bondage number of $G$, denoted by $b_2'(G)$, is the minimum cardinality among all sets of edges $E' \subseteq E$ such that $\delta(G-E') \ge 1$ and $\gamma_2(G-E') > \gamma_2(G)$. If for every $E' \subseteq E$, either $\gamma_2(G-E') = \gamma_2(G)$ or $\delta(G-E') = 0$, then we define $b_2'(G) = 0$, and we say that $G$ is a $\gamma_2$-non-isolatingly strongly stable graph. First we discuss the basic properties of non-isolating 2-bondage in graphs. We find the non-isolating 2-bondage numbers for several classes of graphs. Next we show that for every non-negative integer there exists a tree having such non-isolating 2-bondage number. Finally, we characterize all $\gamma_2$-non-isolatingly strongly stable trees.

Article information

Source
J. Math. Soc. Japan, Volume 65, Number 1 (2013), 37-50.

Dates
First available in Project Euclid: 24 January 2013

Permanent link to this document
https://projecteuclid.org/euclid.jmsj/1359036448

Digital Object Identifier
doi:10.2969/jmsj/06510037

Mathematical Reviews number (MathSciNet)
MR2789280

Zentralblatt MATH identifier
1261.05078

Subjects
Primary: 05C05: Trees 05C69: Dominating sets, independent sets, cliques

Keywords
2-domination bondage non-isolating 2-bondage graph tree

Citation

KRZYWKOWSKI, Marcin. Non-isolating 2-bondage in graphs. J. Math. Soc. Japan 65 (2013), no. 1, 37--50. doi:10.2969/jmsj/06510037. https://projecteuclid.org/euclid.jmsj/1359036448


Export citation

References

  • M. Blidia, M. Chellali and O. Favaron, Independence and 2-domination in trees, Australas. J. Combin., 33 (2005), 317–327.
  • G. S. Domke and R. C. Laskar, The bondage and reinforcement numbers of $\gamma_f$ for some graphs, Discrete Math., 167/168 (1997), 249–259.
  • J. F. Fink and M. S. Jacobson, $n$-domination in graphs, In: Graph Theory with Applications to Algorithms and Computer Science (Kalamazoo, Mich., 1984), Wiley-Intersci. Publ., Wiley, New York, 1985, pp.,282–300.
  • J. F. Fink, M. S. Jacobson, L. F. Kinch and J. Roberts, The bondage number of a graph, Discrete Math., 86 (1990), 47–57.
  • B. L. Hartnell and D. F. Rall, A characterization of trees in which no edge is essential to the domination number, Ars Combin., 33 (1992), 65–76.
  • B. L. Hartnell and D. F. Rall, Bounds on the bondage number of a graph, Discrete Math., 128 (1994), 173–177.
  • T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, Monogr. Textbooks Pure Apple. Math., 208, Marcel Dekker, New York, 1998.
  • T. W. Haynes, S. T. Hedetniemi and P. J. Slater (eds.), Domination in Graphs: Advanced Topics, Monogr. Textbooks Pure Apple. Math., 209, Marcel Dekker, New York, 1998.
  • L. Kang and J. Yuan, Bondage number of planar graphs, Discrete Math., 222 (2000), 191–198.
  • H. Liu and L. Sun, The bondage and connectivity of a graph, Discrete Math., 263 (2003), 289–293.
  • J. Raczek, Paired bondage in trees, Discrete Math., 308 (2008), 5570–5575.
  • U. Teschner, New results about the bondage number of a graph, Discrete Math., 171 (1997), 249–259.
  • L. Volkmann, A Nordhaus-Gaddum-type result for the $2$-domination number, J. Combin. Math. Combin. Comput., 64 (2008), 227–235.
  • Y. P. Wu and Q. Fan, The bondage number of four domination parameters for trees, J. Math. (Wuhan), 24 (2004), 267–270.