Journal of the Mathematical Society of Japan

On the maximal $L_p$-$L_q$ regularity of the Stokes problem with first order boundary condition; model problems

Yoshihiro SHIBATA and Senjo SHIMIZU

Full-text: Open access

Abstract

In this paper, we proved the generalized resolvent estimate and the maximal $L_p$-$L_q$ regularity of the Stokes equation with first order boundary condition in the half-space, which arises in the mathematical study of the motion of a viscous incompressible one phase fluid flow with free surface. The core of our approach is to prove the $\mathcal{R}$ boundedness of solution operators defined in a sector $\Sigma_{\epsilon,\gamma_0} = \{\lambda \in C \: \backslash \: \{0\} \: | \: \left|\mathrm{arg}\lambda\right| \leq \pi - \epsilon, \left|\lambda\right| \geq \gamma_0 \}$ with $0 < \epsilon < \pi / 2$ and $\gamma_0 \geq 0$. This $\mathcal{R}$ boundedness implies the resolvent estimate of the Stokes operator and the combination of this $\mathcal{R}$ boundedness with the operator valued Fourier multiplier theorem of L. Weis implies the maximal $L_p$-$L_q$ regularity of the non-stationary Stokes. For a densely defined closed operator $A$, we know that what $A$ has maximal $L_p$ regularity implies that the resolvent estimate of $A$ in $\lambda \in \Sigma_{\epsilon,\gamma_0}$, but the opposite direction is not true in general (cf. Kalton and Lancien [19]). However, in this paper using the $\mathcal{R}$ boundedness of the operator family in the sector $\Sigma_{\epsilon,\gamma_0}$, we derive a systematic way to prove the resolvent estimate and the maximal $L_p$ regularity at the same time.

Article information

Source
J. Math. Soc. Japan, Volume 64, Number 2 (2012), 561-626.

Dates
First available in Project Euclid: 26 April 2012

Permanent link to this document
https://projecteuclid.org/euclid.jmsj/1335444404

Digital Object Identifier
doi:10.2969/jmsj/06420561

Mathematical Reviews number (MathSciNet)
MR2916080

Zentralblatt MATH identifier
1251.35074

Subjects
Primary: 35Q30: Navier-Stokes equations [See also 76D05, 76D07, 76N10]
Secondary: 76D07: Stokes and related (Oseen, etc.) flows

Keywords
Stokes equation half space problem maximal regularity resolvent estimate surface tension gravity force

Citation

SHIBATA, Yoshihiro; SHIMIZU, Senjo. On the maximal $L_p$-$L_q$ regularity of the Stokes problem with first order boundary condition; model problems. J. Math. Soc. Japan 64 (2012), no. 2, 561--626. doi:10.2969/jmsj/06420561. https://projecteuclid.org/euclid.jmsj/1335444404


Export citation

References

  • H. Abels, The initial-value problem for the Navier-Stokes equations with a free surface in $L^q$-Sobolev spaces, Adv. Differential Equations, 10 (2005), 45–64.
  • H. Abels, On generalized solutions of two-phase flows for viscous incompressible fluids, Interfaces Free Bound., 9 (2007), 31–65.
  • G. Allain, Small-time existence for Navier-Stokes equations with a free surface, Appl. Math. Optim., 16 (1987), 37–50.
  • H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, In: Function Spaces, (eds. H.-J. Schmeisser and H. Triebel), Differential Operators and Nonlinear Analysis, Teubner-Texte Math., 133, Teubner, Stuttgart, Leipzig, 1993, pp.,9–126.
  • H. Amann, Linear and Quasilinear Parabolic Problems, I, Monogr. Math., Birkhäuser, Basel, 1995.
  • W. Arendt, C. J. K. Batty, M. Hieber and F. Neubrander, Vector-valued Laplace Transforms and Cauchy Problems, Monogr. Math., 96, Birkhäuser, 2001.
  • J. T. Beale, The initial value problem for the Navier-Stokes equations with a free surface, Comm. Pure Appl. Math., 34 (1981), 359–392.
  • J. T. Beale, Large-time regularity of viscous surface waves, Arch. Rational Mech. Anal., 84 (1983/84), 307–352.
  • J. T. Beale and T. Nishida, Large-time behaviour of viscous surface waves, Recent topics in nonlinear PDE, II, North-Holland Math. Stud., 128, North-Holland, Amsterdam, 1985, pp.,1–14.
  • J. Bourgain, Vector-valued singular integrals and the $H^1$-BMO duality, In: Probability Theory and Harmonic Analysis, (ed. D. Borkholder), Monogr. Textbooks Pure Appl. Math., 98, Marcel Dekker, New York, 1986, pp.,1–19.
  • R. Denk, M. Hieber and J. Prüß, $\mathcal{R}$-boundedness, Fourier multipliers and problems of elliptic and parabolic type, Mem. Amer. Math. Soc., 166 (2003).
  • I. V. Denisova, A priori estimates for the solution of the linear nonstationary problem connected with the motion of a drop in a liquid medium, Trudy Mat. Inst. Steklov., 188 (1990), 3–21 (in Russian); English transl.: Proc. Steklov Inst. Math., (1991), 1–24.
  • I. V. Denisova, Problem of the motion of two viscous incompressible fluids separated by a closed free interface, Acta Appl. Math., 37 (1994), 31–40.
  • I. V. Denisova and V. A. Solonnikov, Solvability in Hölder spaces of a model initial-boundary value problem generated by a problem on the motion of two fluids, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 188 (1991), 5–44, (in Russian); English transl.: J. Math. Sci., 70 (1994), 1717–1746.
  • I. V. Denisova and V. A. Solonnikov, Classical solvability of the problem on the motion of two viscous incompressible fluids, Algebra i Analiz, 7 (1995), 101–142, (in Russian); English transl.: St.Petersburg Math. J., 7 (1996), 755–786.
  • J. Diestel and J. J. Uhl Jr., Vector Measure, Amer. Math. Soc., Providence, RI, 1977.
  • Y. Hataya, Decaying solution of a Navier-Stokes flow without surface tension, J. Math. Kyoto Univ., 49 (2009), 691–717.
  • Y. Giga and Sh. Takahashi, On global weak solutions of the nonstationary two-phase Stokes flow, SIAM J. Math. Anal., 25 (1994), 876–893.
  • N. J. Kalton and G. Lancien, $L^p$-maximal regularity on Banach spaces with a Schauder basis, Arch. Math. (Basel), 78 (2002), 397–408.
  • S. G. Mihlin, On the multipliers of Fourier integrals (in Russian), Dokl. Akad. Nauk. SSSR (N.S.), 109 (1956), 701–703.
  • S. G. Mihlin, Fourier integrals and multiple singular integrals (in Russian), Vest. Leningrad Univ. Ser. Mat., 12 (1957), 143–145.
  • I. Sh. Mogilevskiĭ and V. A. Solonnikov, On the solvability of a free boundary problem for the Navier-Stokes equations in the Hölder space of functions, Nonlinear Analysis, Sc. Norm. Super. di Pisa Quaderni, Scuola Norm. Sup., Pisa, 1991, pp.,257–271.
  • P. B. Mucha and W. Zajączkowski, On local existence of solutions of the free boundary problem for an incompressible viscous self-gravitating fluid motion, Appl. Math., 27 (2000), 319–333.
  • A. Nouri and F. Poupaud, An existence theorem for the multifluid Navier-Stokes problem, J. Differential Equations, 122 (1995), 71–88.
  • M. Padula and V. A. Solonnikov, On the global existence of nonsteady motions of a fluid drop and their exponential decay to a uniform rigid rotation, Quad. Mat., 10 (2002), 185–218.
  • J. Prüß and G. Simonett, Analysis of the boundary symbol for the two-phase Navier-Stokes equations with surface tension, Banach Center Publ., 86 (2009), 265–285.
  • J. Prüß and G. Simonett, On the two-phase Navier-Stokes equations with surface tension, Interfaces Free Bound., 12 (2010), 311–345.
  • J. Prüß and G. Simonett, Analytic solutions for the two-phase Navier-Stokes equations with surface tension and gravity, Progress in Nonlinear Differential Equations and Their Applications, 80, Springer Basel AG, 2011, pp.,507–540.
  • B. Schweizer, Free boundary fluid systems in a semigroup approach and oscillatory behavior, SIAM J. Math. Anal., 28 (1997), 1135–1157.
  • Y. Shibata and S. Shimizu, A decay property of the Fourier transform and its application to the Stokes problem, J. Math. Fluid Mech., 3 (2001), 213–230.
  • Y. Shibata and S. Shimizu, On a resolvent estimate for the Stokes system with Neumann boundary condition, Differential Integral Equations, 16 (2003), 385–426.
  • Y. Shibata and S. Shimizu, On a resolvent estimate of the interface problem for the Stokes system in a bounded domain, J. Differential Equations, 191 (2003), 408–444.
  • Y. Shibata and S. Shimizu, On a free boundary problem for the Navier-Stokes equations, Differential Integral Equations, 20 (2007), 241–276.
  • Y. Shibata and S. Shimizu, On the $L_p$-$L_q$ maximal regularity of the Neumann problem for the Stokes equations in a bounded domain, J. Reine Angew. Math., 615 (2008), 157–209.
  • Y. Shibata and S. Shimizu, On a resolvent estimate of the Stokes system in a half space arising from a free boundary problem for the Navier-Stokes equations, Math. Nachr., 282 (2009), 482–499.
  • S. Shimizu, $L_p$-$L_q$ maximal regularity of the interface problem for the Stokes system in unbounded domain, Mathematical Analysis in Fluid and Gas Dynamics, RIMS Kôkyûroku, 1536 (2007), 58–72.
  • S. Shimizu, Maximal regularity and viscous incompressible flows with free interface, Parabolic and Navier-Stokes Equations, Banach Center Publ., 81 (2008), 471–480.
  • S. Shimizu, Local solvability of free boundary problems for two-phase Navier-Stokes equations with surface tension in the whole space, Progr. Nonlinear Differential Equations Appl., 80 (2011), 647–686.
  • V. A. Solonnikov, Solvability of the problem of evolution of an isolated amount of a viscous incompressible capillary fluid, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 140 (1984), 179–186, (in Russian).
  • V. A. Solonnikov, Unsteady flow of a finite mass of a fluid bounded by a free surface, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 152 (1986), 137–157, (in Russian); English transl.: J. Soviet Math., 40 (1988), 672–686.
  • V. A. Solonnikov, On the transient motion of an isolated volume of viscous incompressible fluid, Izv. Acad. Nauk SSSR Ser. Mat., 51 (1987), 1065–1087, (in Russian); English transl.: Math. USSR Izv., 31 (1988), 381–405.
  • V. A. Solonnikov, On nonstationary motion of a finite isolated mass of self-gravitating fluid, Algebra i Analiz, 1 (1989), 207–249, (in Russian); English transl.: Leningrad Math. J., 1 (1990), 227–276.
  • V. A. Solonnikov, On an initial-boundary value problem for the Stokes systems arising in the study of a problem with a free boundary, Trudy Mat. Inst. Steklov., 188 (1990), 150–188, (in Russian); English transl.: Proc. Steklov Inst. Math., 3 (1991), 191–239.
  • V. A. Solonnikov, Solvability of the problem of evolution of a viscous incompressible fluid bounded by a free surface on a finite time interval, Algebra i Analiz, 3 (1991), 222–257, (in Russian); English transl.: St. Petersburg Math. J., 3 (1992), 189–220.
  • V. A. Solonnikov, Lectures on evolution free boundary problems: classical solutions, (L. Ambrosio et al.) Mathematical aspects of evolving interfaces, Lecture Notes in Math., 1812, Springer-Verlag, 2003, pp.,123–175.
  • E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, 1970.
  • D. L. G. Sylvester, Large time existence of small viscous surface waves without surface tension, Comm. Partial Differential Equations, 15 (1990), 823–903.
  • D. L. G. Sylvester, Decay rates for a two-dimensional viscous ocean of finite depth, J. Math. Anal. Appl., 202 (1996), 659–666.
  • Sh. Takahashi, On global weak solutions of the nonstationary two-phase Navier-Stokes flow, Adv. Math. Sci. Appl., 5 (1995), 321–342.
  • N. Tanaka, Two-phase free boundary problem for viscous incompressible thermocapillary convection, Japan. J. Math. (N. S.), 21 (1995), 1–42.
  • A. Tani, Small-time existence for the three-dimensional Navier-Stokes equations for an incompressible fluid with a free surface, Arch. Rational Mech. Anal., 133 (1996), 299–331.
  • A. Tani and N. Tanaka, Large-time existence of surface waves in incompressible viscous fluids with or without surface tension, Arch. Rational Mech. Anal., 130 (1995), 303–314.
  • H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, 2nd edition, Johann Ambrosius Barth, Heidelberg, 1995.
  • L. R. Volevich, Solvability of boundary value problems for general elliptic systmes, Mat. Sb., 68 (1965), 373–416, (in Russian); English transl.: Amer. Math. Soc. Transl., Ser. 2., 67 (1968), 182–225.
  • L. Weis, Operator-valued Fourier multiplier theorems and maximal $L_p$-regularity, Math. Ann., 319 (2001), 735–758.
  • F. Zimmermann, On vector-valued Fourier multiplier theorems, Studia Math., 93 (1989), 201–222.