Journal of the Mathematical Society of Japan

On Orevkov's rational cuspidal plane curves

Keita TONO

Full-text: Open access


In this note, we consider rational cuspidal plane curves having exactly one cusp whose complements have logarithmic Kodaira dimension two. We classify such curves with the property that the strict transforms of them via the minimal embedded resolution of the cusp have the maximal self-intersection number. We show that the curves given by the classification coincide with those constructed by Orevkov.

Article information

J. Math. Soc. Japan, Volume 64, Number 2 (2012), 365-385.

First available in Project Euclid: 26 April 2012

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 14H50: Plane and space curves

rational plane curve cusp Orevkov


TONO, Keita. On Orevkov's rational cuspidal plane curves. J. Math. Soc. Japan 64 (2012), no. 2, 365--385. doi:10.2969/jmsj/06420365.

Export citation


  • E. Artal Bartolo and H. Tokunaga, Zariski pairs of index 19 and Mordell-Weil groups of $K3$ surfaces, Proc. London Math. Soc. (3), 80 (2000), 127–144.
  • E. Brieskorn and H. Knörrer, Plane Algebraic Curves, Birkhäuser Basel, Boston, Stuttgart, 1986.
  • T. Fujita, On the topology of non-complete algebraic surfaces, J. Fac. Sci. Univ. Tokyo, 29 (1982), 503–566.
  • H. Kojima, Complements of plane curves with logarithmic Kodaira dimension zero, J. Math. Soc. Japan, 52 (2000), 793–806.
  • H. Kojima, On the logarithmic plurigenera of complements of plane curves, Math. Ann., 332 (2005), 1–15.
  • H. Kojima, On the Logarithmic Bigenera of Some Affine Surfaces, Affine Algebraic Geometry, Osaka University Press, Osaka, 2007, pp.,257–273.
  • T. Matsuoka and F. Sakai, The degree of rational cuspidal curves, Math. Ann., 285 (1989), 233–247.
  • M. Miyanishi and T. Sugie, $\boldsymbol{Q}$-homology planes with $\boldsymbol{C}^{\ast\ast}$-fibrations, Osaka J. Math., 28 (1991), 1–26.
  • M. Miyanishi and S. Tsunoda, Non-complete algebraic surfaces with logarithmic Kodaira dimension $-\infty$ and with non-connected boundaries at infinity, Japan. J. Math., 10 (1984), 195–242.
  • M. Miyanishi and S. Tsunoda, Absence of the affine lines on the homology planes of general type, J. Math. Kyoto Univ., 32 (1992), 443–450.
  • S. Yu. Orevkov, On rational cuspidal curves I, Sharp estimate for degree via multiplicities, Math. Ann., 324 (2002), 657–673.
  • K. Tono, Rational unicuspidal plane curves with $\bar{\kappa}=1$, Sūrikaisekikenkyūsho Kōkyūroku, 1233 (2001), 82–89.
  • S. Tsunoda, The complements of projective plane curves, Sūrikaisekikenkyūsho Kōkyūroku, 446 (1981), 48–56.
  • H. Yoshihara, Rational curves with one cusp (in Japanese), Sūgaku, 40 (1988), 269–271.