Journal of the Mathematical Society of Japan

Holonomic systems of Gegenbauer type polynomials of matrix arguments related with Siegel modular forms

Tomoyoshi IBUKIYAMA, Takako KUZUMAKI, and Hiroyuki OCHIAI

Full-text: Open access

Abstract

Differential operators on Siegel modular forms which behave well under the restriction of the domain are essentially intertwining operators of the tensor product of holomorphic discrete series to its irreducible components. These are characterized by polynomials in the tensor of pluriharmonic polynomials with some invariance properties. We give a concrete study of such polynomials in the case of the restriction from Siegel upper half space of degree 2n to the product of degree n. These generalize the Gegenbauer polynomials which appear for n = 1. We also describe their radial parts parametrization and differential equations which they satisfy, and show that these differential equations give holonomic systems of rank 2n.

Article information

Source
J. Math. Soc. Japan, Volume 64, Number 1 (2012), 273-316.

Dates
First available in Project Euclid: 26 January 2012

Permanent link to this document
https://projecteuclid.org/euclid.jmsj/1327586984

Digital Object Identifier
doi:10.2969/jmsj/06410273

Mathematical Reviews number (MathSciNet)
MR2879746

Zentralblatt MATH identifier
1272.11066

Subjects
Primary: 11F60: Hecke-Petersson operators, differential operators (several variables) 32C38: Sheaves of differential operators and their modules, D-modules [See also 14F10, 16S32, 35A27, 58J15]
Secondary: 11F46: Siegel modular groups; Siegel and Hilbert-Siegel modular and automorphic forms 33C67: Hypergeometric functions associated with root systems

Keywords
Siegel modular forms differential operators holonomic system

Citation

IBUKIYAMA, Tomoyoshi; KUZUMAKI, Takako; OCHIAI, Hiroyuki. Holonomic systems of Gegenbauer type polynomials of matrix arguments related with Siegel modular forms. J. Math. Soc. Japan 64 (2012), no. 1, 273--316. doi:10.2969/jmsj/06410273. https://projecteuclid.org/euclid.jmsj/1327586984


Export citation

References

  • C. Bachoc, R. Coulangeon and G. Nebe, Designs in Grassmannian spaces and lattices, J. Algebraic Combin., 16 (2002), 5–19.
  • R. J. Beerends and E. M. Opdam, Certain hypergeometric series related to the root system $BC$, Trans. Amer. Math. Soc., 339 (1993), 581–609.
  • S. Böcherer, Über die Fourier Jacobi-Entwicklung Siegelscher Eisensteinreihen, II (German), Math. Z., 189 (1985), 81–110.
  • S. Böcherer, T. Satoh and T. Yamazaki, On the pullback of a differential operator and its application to vector valued Eisenstein series, Comment. Math. Univ. St. Paul., 41 (1992), 1–22.
  • A. G. Constantine, Some non-central distribution problems in multivariate analysis, Ann. Math. Statist., 34 (1963), 1270–1285.
  • W. Eholzer and T. Ibukiyama, Rankin-Cohen type differential operators for Siegel modular forms, Internat. J. Math., 9 (1998), 443–463.
  • M. Eichler and D. Zagier, The theory of Jacobi forms, Progr. Math., 55, Birkhäuser, Boston, Inc., Boston MA, 1985, v+148 pp.
  • R. Goodman and N. R. Wallach, Representations and invariants of the classical groups, Encyclopedia of Mathematics and its Application, 68, Cambridge University Press, Cambridge, 1998, xvi+685 pp.
  • G. J. Heckman, Root systems and hypergeometric functions, II, Compositio Math., 64 (1987), 353–374.
  • G. J. Heckman and E. M. Opdam, Root systems and hypergeometric functions, I, Compositio Math., 64 (1987), 329–352.
  • G. Heckman and H. Schlichtkrull, Harmonic Analysis and Special Functions on Symmetric Spaces, (ed. S. Helgason), Perspectives in Mathematics, 16, Academic Press Inc., San Diego, CA, 1994, xii+225 pp.
  • R. Hotta, K. Takeuchi and T. Tanisaki, $\mathscr{D}$-Modules, Perverse Sheaves, and Representation Theory, Progr. Math., 236, Birkhäuser Boston Inc., Boston, MA, 2008, xi+ 407 pp.
  • T. Ibukiyama, On differential operators on automorphic forms and invariant pluri-harmonic polynomials, Comment. Math. Univ. St. Paul., 48 (1999), 103–118.
  • T. Ibukiyama and D. Zagier, Higher spherical polynomials, in preparation.
  • T. Ibukiyama and D. Zagier, Higher spherical functions, in preparation.
  • A. T. James, Zonal polynomials of the real positive definite symmetric matrices, Ann. of Math. (2), 74 (1961), 456–469.
  • A. T. James and A. G. Constantine, Generalized Jacobi polynomials as spherical functions of the Grassmann manifold, Proc. London Math. Soc. (3), 29 (1974), 174–192.
  • M. Kashiwara, Algebraic Analysis, Iwanami Shoten, Tokyo, 2000, 276 pp (Japanese).
  • M. Kashiwara and M. Vergne, On the Segal-Shale-Weil representations and harmonic polynomials, Invent. Math., 44 (1978), 1–47.
  • H. Katsurada, Exact standard zeta values of Siegel modular forms, Experiment. Math., 19 (2010), 65–77.
  • R. Muirhead, Systems of partial differential equations for hypergeometric functions of matrix argument, Ann. Math. Statist., 41 (1970), 991–1001.
  • M. Sato, M. Kashiwara, T. Kimura and T. Oshima, Micro-local analysis of prehomogeneous vector spaces, Invent. Math., 62 (1980), 117–179.