Journal of the Mathematical Society of Japan

Classification of plane curves with infinitely many Galois points

Satoru FUKASAWA

Full-text: Open access

Abstract

For a plane curve, a point in the projective plane is said to be Galois when the point projection induces a Galois extension of function fields. We completely classify plane curves with infinitely many outer Galois points.

Article information

Source
J. Math. Soc. Japan, Volume 63, Number 1 (2011), 195-209.

Dates
First available in Project Euclid: 27 January 2011

Permanent link to this document
https://projecteuclid.org/euclid.jmsj/1296138349

Digital Object Identifier
doi:10.2969/jmsj/06310195

Mathematical Reviews number (MathSciNet)
MR2752437

Zentralblatt MATH identifier
1211.14036

Subjects
Primary: 14H50: Plane and space curves
Secondary: 12F10: Separable extensions, Galois theory

Keywords
Galois point positive characteristic plane curve

Citation

FUKASAWA, Satoru. Classification of plane curves with infinitely many Galois points. J. Math. Soc. Japan 63 (2011), no. 1, 195--209. doi:10.2969/jmsj/06310195. https://projecteuclid.org/euclid.jmsj/1296138349


Export citation

References

  • V. Bayer and A. Hefez, Strange curves, Comm. Algebra, 19 (1991), 3041–3059.
  • S. Fukasawa, On the number of Galois points for a plane curve in positive characteristic, II, Geom. Dedicata, 127 (2007), 131–137.
  • S. Fukasawa and T. Hasegawa, Singular plane curves with infinitely many Galois points, J. Algebra, 323 (2010), 10–13.
  • D. Goss, Basic Structures of Function Field Arithmetic, Springer, Berlin, 1996.
  • A. Hefez, Non-reflexive curves, Compositio Math., 69 (1989), 3–35.
  • A. Hefez and S. Kleiman, Notes on the duality of projective varieties, “Geometry Today”, Prog. Math., 60, Birkhäuser, Boston, 1985, pp.,143–183.
  • M. Homma, Galois points for a Hermitian curve, Comm. Algebra, 34 (2006), 4503–4511.
  • H. Kaji, Characterization of space curves with inseparable Gauss maps in extremal cases, Arch. Math., 58 (1992), 539–546.
  • S. Kleiman, Tangency and duality, In Proceedings 1984 Vancouver Conference in Algebraic Geometry, CMS Conf. Proc. 6, Amer. Math. Soc., 1986, pp.,163–226.
  • E. Lluis, Variedades algebraicas con ciertas condiciones en sus tangents, Bol. Soc. Math. Mex., 7 (1962), 47–56.
  • H. Matsuyama, Solvability of groups of order $2^ap^b$, Osaka J. Math., 10 (1973), 375–378.
  • K. Miura, Galois points on singular plane quartic curves, J. Algebra, 287 (2005), 283–293.
  • K. Miura and H. Yoshihara, Field theory for function fields of plane quartic curves, J. Algebra, 226 (2000), 283–294.
  • R. Pardini, Some remarks on plane curves over fields of finite characteristic, Compositio Math., 60 (1986), 3–17.
  • P. Roquette, Abschätzung der Automorphismenanzahl von Funktionenkörpern bei Primzahlcharakteristik, Math. Z., 117 (1970), 157–163.
  • P. Samuel, Lectures on Old and New Results on Algebraic Curves, Tata Institute of Fundamental Research, Bombay, 1966.
  • H. L. Schmid, Über die Automorphismen eines algebraischen Funktionenkörpers von Primzahlcharakteristik, J. Reine Angew. Math., 179 (1938), 5–15.
  • J. H. Silverman, The Arithmetic of Elliptic Curves, GTM 106, Springer-Verlag, New York, 1986.
  • H. Stichtenoth, Algebraic Function Fields and Codes, Universitext, Springer-Verlag, Berlin, 1993.
  • K. O. Stöhr and J. F. Voloch, Weierstrass points and curves over finite fields, Proc. London Math. Soc. (3), 52 (1986), 1–19.
  • M. Suzuki, Group Theory I, Grundlehren der Mathematischen Wissenschaften 247, Springer-Verlag, Berlin-New York, 1982.
  • H. Yoshihara, Function field theory of plane curves by dual curves, J. Algebra, 239 (2001), 340–355.
  • H. Yoshihara, Galois points for plane rational curves, Far east J. Math. Sci., 25 (2007), 273–284.
  • H. Yoshihara, Rational curve with Galois point and extendable Galois automorphism, J. Algebra, 321 (2009), 1463–1472.