Journal of the Mathematical Society of Japan

New examples of complete hypersurfaces with constant positive scalar curvature in the Euclidean space

Takashi OKAYASU

Full-text: Open access

Abstract

By using the method of equivariant differential geometry, we construct a new family of noncompact complete hypersurfaces with constant positive scalar curvature in the Euclidean spaces. To do so we make a detailed analysis of the nonlinear ODE of the constant scalar curvature equation.

Article information

Source
J. Math. Soc. Japan, Volume 62, Number 4 (2010), 1137-1166.

Dates
First available in Project Euclid: 2 November 2010

Permanent link to this document
https://projecteuclid.org/euclid.jmsj/1288703100

Digital Object Identifier
doi:10.2969/jmsj/06241137

Mathematical Reviews number (MathSciNet)
MR2761917

Zentralblatt MATH identifier
1208.53063

Subjects
Primary: 53C40: Global submanifolds [See also 53B25]
Secondary: 53C42: Immersions (minimal, prescribed curvature, tight, etc.) [See also 49Q05, 49Q10, 53A10, 57R40, 57R42]

Keywords
scalar curvature equivariant differential geometry

Citation

OKAYASU, Takashi. New examples of complete hypersurfaces with constant positive scalar curvature in the Euclidean space. J. Math. Soc. Japan 62 (2010), no. 4, 1137--1166. doi:10.2969/jmsj/06241137. https://projecteuclid.org/euclid.jmsj/1288703100


Export citation

References

  • Q-M. Cheng, Complete hypersurfaces in a Euclidean space $\bm{R}\sp {n+1}$ with constant scalar curvature, Indiana Univ. Math. J., 51 (2002), 53–68.
  • S. Y. Cheng and S. T. Yau, Hypersurfaces with constant scalar curvature, Math. Ann., 225 (1977), 195–204.
  • S. S. Chern, On the curvatures of a piece of hypersurface in Euclidean space, Abh. Math. Sem. Univ. Hamburg, 29 (1965), 77–91.
  • W. Y. Hsiang, Generalized rotational hypersurfaces of constant mean curvature in the Euclidean spaces, I, J. Differential Geom., 17 (1982), 337–356.
  • W. Y. Hsiang and H-L. Huynh, Generalized rotational hypersurfaces of constant mean curvature in the Euclidean spaces, II, Pacific J. Math., 130 (1987), 75–95.
  • W. Y. Hsiang and H.B. Lawson, Minimal submanifolds of low cohomogeneity, J. Differential Geom., 5 (1971), 1–38.
  • W. Y. Hsiang, Z. H. Teng and W. C. Yu, New examples of constant mean curvature immersions of $(2k-1)$-spheres into Euclidean $2k$-space, Ann. of Math., 117 (1983), 609–625.
  • M. L. Leite, Rotational hypersurfaces of space forms with constant scalar curvature, Manuscripta Math., 67 (1990), 285–304.
  • T. Okayasu, ${\rm O}(2)\times{\rm O}(2)$-invariant hypersurfaces with constant negative scalar curvature in $E\sp 4$, Proc. Amer. Math. Soc., 107 (1989), 1045–1050.
  • T. Okayasu, On compact hypersurfaces with constant scalar curvature in the Euclidean space, Kodai Math. J., 28 (2005), 577–585.
  • O. Palmas, $\rm O(2)\times O(2)$-invariant hypersurfaces with zero scalar curvature, Arch. Math. (Basel), 74 (2000), 226–233.
  • R. C. Reilly, Variational properties of functions of mean curvatures for hypersurfaces in space forms, J. Differential Geom., 8 (1973), 465–477.
  • A. Ros, Compact hypersurfaces with constant scalar curvature and a congruence theorem, With an appendix by Nicholas J. Korevaar, J. Differential Geom., 27 (1988), 215–223.
  • H. Rosenberg, Hypersurfaces of constant curvature in space forms, Bull. Sci. Math., 117 (1993), 211–239.
  • J. Sato, ${\rm O}(p+1)\times{\rm O}(p+1)$-invariant hypersurfaces with zero scalar curvature in Euclidean space, An. Acad. Brasil. Cienc., 72 (2000), 109–115.
  • T. Y. T. Thomas, On closed spaces of constant mean curvature, Amer. J. Math., 58 (1936), 702–704.
  • S-T. Yau, Problem Section, Seminar on Differential Geometry, Ann. of Math. Studies, 102, Princeton, 1982, pp.,669–706.