Journal of the Mathematical Society of Japan

Whitehead products in function spaces: Quillen model formulae

Gregory LUPTON and Samuel Bruce SMITH

Full-text: Open access

Abstract

We study Whitehead products in the rational homotopy groups of a general component of a function space. For the component of any based map f : X Y , in either the based or free function space, our main results express the Whitehead product directly in terms of the Quillen minimal model of f . These results follow from a purely algebraic development in the setting of chain complexes of derivations of differential graded Lie algebras, which is of interest in its own right. We apply the results to study the Whitehead length of function space components.

Article information

Source
J. Math. Soc. Japan, Volume 62, Number 1 (2010), 49-81.

Dates
First available in Project Euclid: 5 February 2010

Permanent link to this document
https://projecteuclid.org/euclid.jmsj/1265380424

Digital Object Identifier
doi:10.2969/jmsj/06210049

Mathematical Reviews number (MathSciNet)
MR2648216

Zentralblatt MATH identifier
1193.55005

Subjects
Primary: 55P62: Rational homotopy theory 55Q15: Whitehead products and generalizations

Keywords
Whitehead product function space Quillen minimal model derivation coformal space Whitehead length

Citation

LUPTON, Gregory; SMITH, Samuel Bruce. Whitehead products in function spaces: Quillen model formulae. J. Math. Soc. Japan 62 (2010), no. 1, 49--81. doi:10.2969/jmsj/06210049. https://projecteuclid.org/euclid.jmsj/1265380424


Export citation

References

  • I. Berstein and T. Ganea, Homotopical nilpotency, Illinois J. Math., 5 (1961), 99–130.
  • E. H. Brown, Jr. and R. H. Szczarba, Some algebraic constructions in rational homotopy theory, Topology Appl., 80 (1997), 251–258.
  • U. Buijs, Y. Félix and A. Murillo, Lie models for the components of sections of nilpotent fibrations, Trans. Amer. Math. Soc., 361 (2009), 5601–5614.
  • U. Buijs and A. Murillo, The rational homotopy Lie algebra of function spaces, Comment. Math. Helv., 83 (2008), 723–739.
  • Y. Félix, S. Halperin and J.-C. Thomas, Rational homotopy theory, Graduate Texts in Mathematics, 205, Springer-Verlag, New York, 2001.
  • T. Ganea, Lusternik-Schnirelmann category and cocategory, Proc. London Math. Soc. (3), 10 (1960), 623–639.
  • P. A. Griffiths and J. W. Morgan, Rational homotopy theory and differential forms, Progress in Mathematics, 16, Birkhäuser Boston, Mass., 1981.
  • G. Lupton, N. C. Phillips, C. S. Schochet and S. B. Smith, Banach algebras and rational homotopy theory, Trans. Amer. Math. Soc., 361 (2009), 267–295.
  • G. Lupton and S. B. Smith, Criteria for components of a function space to be homotopy equivalent, Math. Proc. Camb. Philos. Soc., 145 (2008), 95–106.
  • G. Lupton and S. B. Smith, Rationalized evaluation subgroups of a map II: Quillen models and adjoint maps, J. Pure Appl. Algebra, 209 (2007), 173–188.
  • G. Lupton and S. B. Smith, Cyclic maps in rational homotopy theory, Math. Z., 249 (2005), 113–124.
  • J. Møller and M. Raussen, Rational homotopy of spaces of maps into spheres and complex projective spaces, Trans. Amer. Math. Soc., 292 (1985), 721–732.
  • D. Quillen, Rational homotopy theory, Ann. Math., 90 (1969), 205–295.
  • P. Salvatore, Rational homotopy nilpotency of self-equivalences, Topology Appl., 77 (1997), 37–50.
  • D. Tanré, Homotopie rationnelle: modèles de Chen, Quillen, Sullivan, Lecture Notes in Math., 1025, Springer-Verlag, Berlin, 1983.
  • M. Vigué-Poirrier, Sur l'homotopie rationnelle des espaces fonctionnels, Manuscripta Math., 56 (1986), 177–191.
  • G. W. Whitehead, Elements of homotopy theory, Graduate Texts in Mathematics, 61, Springer-Verlag, New York, 1978.