Journal of the Mathematical Society of Japan

A classification of graded extensions in a skew Laurent polynomial ring, II

Hidetoshi MARUBAYASHI and Guangming XIE

Full-text: Open access

Abstract

Let V be a total valuation ring of a division ring K with an automorphism σ and let A = i Z A i X i be a graded extension of V in K [ X , X - 1 ; σ ] , the skew Laurent polynomial ring. We classify A by distinguishing three different types based on the properties of A 1 and A - 1 , and a complete description of A i for all i Z is given in the case where A 1 is not a finitely generated left O l ( A 1 ) -ideal.

Article information

Source
J. Math. Soc. Japan, Volume 61, Number 4 (2009), 1111-1130.

Dates
First available in Project Euclid: 6 November 2009

Permanent link to this document
https://projecteuclid.org/euclid.jmsj/1257520502

Digital Object Identifier
doi:10.2969/jmsj/06141111

Mathematical Reviews number (MathSciNet)
MR2421983

Zentralblatt MATH identifier
1204.16031

Subjects
Primary: 16W50: Graded rings and modules

Keywords
graded extension total valuation ring skew Laurent polynomial ring homogeneous element division ring

Citation

XIE, Guangming; MARUBAYASHI, Hidetoshi. A classification of graded extensions in a skew Laurent polynomial ring, II. J. Math. Soc. Japan 61 (2009), no. 4, 1111--1130. doi:10.2969/jmsj/06141111. https://projecteuclid.org/euclid.jmsj/1257520502


Export citation

References

  • H. H. Brungs, H. Marubayashi and E. Osmanagic, A classification of prime segments in simple Artinian rings, Proc. Amer. Math. Soc., 128 (2000), 3167–3175.
  • H. H. Brungs, H. Marubayashi and E. Osmanagic, Gauss extensions and total graded subrings for crossed product algebras, J. Algebra, 316 (2007), 189–205.
  • H. H. Brungs, H. Marubayashi and A. Ueda, A classification of primary ideals of Dubrovin valuation rings, Houston J. Math., 29 (2003), 595–608.
  • H. H. Brungs and M. Schröder, Valuation rings in Ore extensions, J. Algebra, 235 (2001), 665–680.
  • H. H. Brungs and G. Törner, Extensions of chain rings, Math. Z., 185 (1984), 93–104.
  • S. Irawati, H. Marubayashi and A. Ueda, On $R$-ideals of a Dubrovin valuation ring R, Comm. in Algebra, 32 (2004), 261–267.
  • H. Marubayashi, H. Miyamoto and A. Ueda, Non-commutative Valuation Rings and Semi-hereditary Orders, K-Monographs in Math., 3, Kluwer Academic Publishers, 1997.
  • G. Xie, S. Kobayashi, H. Marubayashi, N. Popescu and C. Vraciu, Non-commutative valuation rings of the quotient Artinian ring of a skew polynomial ring, Algebr. Represent. Theory, 8 (2005), 57–68.
  • G. Xie, S. Kobayashi, H. Marubayashi and H. Komatsu, Non-commutative valuation rings of $K(X;\sigma,\delta)$ over a division ring $K$, J. Math. Soc. Japan, 56 (2004), 737–752.
  • G. Xie and H. Marubayashi, A classification of graded extensions in a skew Laurent polynomial ring, J. Math. Soc. Japan, 60 (2008), 423–443.