Journal of the Mathematical Society of Japan

The relative cohomology of formal contact vector fields with respect to formal Poisson vector fields

Masashi TAKAMURA

Full-text: Open access

Abstract

We review the method due to Gel’fand and Fuks to show the finite dimensionality of the cohomology ring of the Lie algebra of formal contact vector fields. We apply this method to prove the relative cohomology of it with respect to formal Poisson vector fields is trivial.

Article information

Source
J. Math. Soc. Japan, Volume 60, Number 1 (2008), 117-125.

Dates
First available in Project Euclid: 24 March 2008

Permanent link to this document
https://projecteuclid.org/euclid.jmsj/1206367957

Digital Object Identifier
doi:10.2969/jmsj/06010117

Mathematical Reviews number (MathSciNet)
MR2392005

Zentralblatt MATH identifier
1211.17018

Subjects
Primary: 17B66: Lie algebras of vector fields and related (super) algebras
Secondary: 17B56: Cohomology of Lie (super)algebras

Keywords
formal vector fields cohomology of Lie algebras contact structures

Citation

TAKAMURA, Masashi. The relative cohomology of formal contact vector fields with respect to formal Poisson vector fields. J. Math. Soc. Japan 60 (2008), no. 1, 117--125. doi:10.2969/jmsj/06010117. https://projecteuclid.org/euclid.jmsj/1206367957


Export citation

References

  • [1] V. I. Arnol'd, Mathematical methods of classical mechanics, Grad. Texts in Math., 60, Springer-Verlag, New York, 1989.
  • [2] R. Bott, Notes on Gel'fand-Fuks cohomology and characteristic classes, Raoul Bott Collected Papers, 3, Foliations, Birkhäuser, 1995, pp. 228–356.
  • [3] \auB. L. Feigin, Cohomology of contact Lie algebras, \tiC. R. Acad. Bulgare Sci., , 35 ((1982),)\spg1029–\epg1031.
  • [4] \auI. M. Gel'fand, D. I. Kalinin and D. B. Fuks, The cohomology of the Lie algebra of Hamiltonian formal vector fields, \tiFunkcional. Anal. i Priložen., , 6 ((1972),)\spg25–\epg29.
  • [5] \auI. M. Gel'fand and D. B. Fuks, Cohomologies of the Lie algebra of tangent vector fields of a smooth manifold, \tiFunkcional. Anal. i Priložen., , 3 ((1969),)\spg32–\epg52.
  • [6] \auI. M. Gel'fand and D. B. Fuks, Cohomologies of the Lie algebra of formal vector fields, \tiIzv. Akad. Nauk SSSR Ser. Mat., , 34 ((1970),)\spg322–\epg337.
  • [7] \auI. M. Gel'fand and D. B. Fuks, Upper bounds for the cohomology of infinite-dimensional Lie algebras, \tiFunkcional. Anal. i Priložen., , 4 ((1970),)\spg70–\epg71.
  • [8] \auV. Guillemin and S. Shnider, Some stable results on the cohomology of the classical infinite-dimensional Lie algebras, \tiTrans. Amer. Math. Soc., , 179 ((1973),)\spg275–\epg280.
  • [9] \auG. Hochschild and J.-P. Serre, Cohomology of Lie algebras, \tiAnn. of Math. (2), , 57 ((1953),)\spg591–\epg603.
  • [10] S. Metoki, Non-trivial cohomology classes of Lie algebras of volume preserving formal vector fields, Thesis, Univ. of Tokyo, 2000.
  • [11] S. Morita, Geometry of Characteristic Classes, Trans. of Math. Monogr., 199, AMS, 2001.