Journal of the Mathematical Society of Japan
- J. Math. Soc. Japan
- Volume 60, Number 1 (2008), 75-116.
Exponential growth of the numbers of particles for branching symmetric -stable processes
Full-text: Open access
Abstract
We study the exponential growth of the numbers of particles for a branching symmetric -stable process in terms of the principal eigenvalue of an associated Schrödinger operator. Here the branching rate and the branching mechanism can be state-dependent. In particular, the branching rate can be a measure belonging to a certain Kato class and is allowed to be singular with respect to the Lebesgue measure. We calculate the principal eigenvalues and give some examples.
Article information
Source
J. Math. Soc. Japan, Volume 60, Number 1 (2008), 75-116.
Dates
First available in Project Euclid: 24 March 2008
Permanent link to this document
https://projecteuclid.org/euclid.jmsj/1206367956
Digital Object Identifier
doi:10.2969/jmsj/06010075
Mathematical Reviews number (MathSciNet)
MR2392004
Zentralblatt MATH identifier
1134.60054
Subjects
Primary: 60J80: Branching processes (Galton-Watson, birth-and-death, etc.)
Secondary: 60G52: Stable processes 60J55: Local time and additive functionals
Keywords
branching process Brownian motion symmetric $\alpha$-stable process exponential growth Schrödinger operator principal eigenvalue gaugeability
Citation
SHIOZAWA, Yuichi. Exponential growth of the numbers of particles for branching symmetric $\alpha$ -stable processes. J. Math. Soc. Japan 60 (2008), no. 1, 75--116. doi:10.2969/jmsj/06010075. https://projecteuclid.org/euclid.jmsj/1206367956
References
- [1] S. Albeverio, P. Blanchard and Z.-M. Ma, Feynman-Kac semigroups in terms of signed smooth measures, Random Partial Differential Equations (Eds. U. Hornung et al.), Birkhäuser, Basel, 1991, pp. 1–31.Mathematical Reviews (MathSciNet): MR1185735
Digital Object Identifier: doi:10.1007/978-3-0348-6413-8_1 - [2] \auS. Albeverio and Z.-M. Ma, Additive functionals, nowhere Radon and Kato class smooth measures associated with Dirichlet forms, \tiOsaka J. Math., , 29 ((1992),)\spg247–\epg265.
- [3] \auJ. P. Antoine, F. Gesztesy and J. Shabani, Exact solvable models of sphere interactions in quantum mechanics, \tiJ. Phys. A, , 20 ((1987),)\spg3687–\epg3712.Mathematical Reviews (MathSciNet): MR913638
Digital Object Identifier: doi:10.1088/0305-4470/20/12/022 - [4] A. N. Borodin and P. Salminen, Handbook of Brownian Motion: Facts and Formulae, Probability and its Applications, Birkhäuser, Basel, 1996.Mathematical Reviews (MathSciNet): MR1477407
- [5] \auR. Carmona, W. C. Masters and B. Simon, Relativistic Schrödinger operators: Asymptotic behavior of the eigenfunctions, \tiJ. Funct. Anal., , 91 ((1990),)\spg117–\epg142.Mathematical Reviews (MathSciNet): MR1054115
Digital Object Identifier: doi:10.1016/0022-1236(90)90049-Q - [6] \auZ.-Q. Chen, Gaugeability and conditional gaugeability, \tiTrans. Amer. Math. Soc., , 354 ((2002),)\spg4639–\epg4679.Mathematical Reviews (MathSciNet): MR1926893
Digital Object Identifier: doi:10.1090/S0002-9947-02-03059-3 - [7] \auZ.-Q. Chen, Analytic characterization of conditional gaugeability for non-local Feynman-Kac transforms, \tiJ. Funct. Anal., , 202 ((2003),)\spg226–\epg246.Mathematical Reviews (MathSciNet): MR1994771
Digital Object Identifier: doi:10.1016/S0022-1236(02)00096-4 - [8] \auZ.-Q. Chen and T. Kumagai, Heat kernel estimates for stable-like processes on $d$-sets, \tiStoch. Proc. Appl., , 108 ((2003),)\spg27–\epg62.Mathematical Reviews (MathSciNet): MR2008600
Digital Object Identifier: doi:10.1016/S0304-4149(03)00105-4 - [9] \auZ.-Q. Chen and Y. Shiozawa, Limit theorems for branching Markov processes, \tiJ. Funct. Anal., , 250 ((2007),)\spg374–\epg399.Mathematical Reviews (MathSciNet): MR2352485
Digital Object Identifier: doi:10.1016/j.jfa.2007.05.011 - [10] \auZ.-Q. Chen and R. Song, Estimates on Green functions and Poisson kernels for symmetric stable processes, \tiMath. Ann., , 312 ((1998),)\spg465–\epg501.
- [11] \auZ.-Q. Chen and R. Song, General gauge and conditional gauge theorems, \tiAnn. Probab., , 30 ((2002),)\spg1313–\epg1339.Mathematical Reviews (MathSciNet): MR1920109
Digital Object Identifier: doi:10.1214/aop/1029867129
Project Euclid: euclid.aop/1029867129 - [12] K. L. Chung and Z. X. Zhao, From Brownian Motion to Schrödinger's Equation, Springer-Verlag, Berlin, 1995.Mathematical Reviews (MathSciNet): MR1329992
- [13] E. B. Davies, Heat Kernels and Spectral Theory, Cambridge Univ. Press, Cambridge, 1989.Mathematical Reviews (MathSciNet): MR990239
- [14] R. Durrett, Probability: Theory and Examples, 3rd ed., Duxbury Press, Belmony, 2004.Mathematical Reviews (MathSciNet): MR1609153
- [15] \auJ. Engländer and A. E. Kyprianou, Local extinction versus local exponential growth for spatial branching processes, \tiAnn. Probab., , 32 ((2004),)\spg78–\epg99.Mathematical Reviews (MathSciNet): MR2040776
Digital Object Identifier: doi:10.1214/aop/1078415829
Project Euclid: euclid.aop/1078415829 - [16] M. Fukushima, Y. Oshima and M. Takeda, Dirichlet Forms and Symmetric Markov Processes, Walter de Gruyter, Berlin, 1994.Mathematical Reviews (MathSciNet): MR1303354
- [17] \auR. K. Getoor, First passage times for symmetric stable processes in space, \tiTrans. Amer. Math. Soc., , 101 ((1961),)\spg75–\epg90.Mathematical Reviews (MathSciNet): MR137148
Digital Object Identifier: doi:10.1090/S0002-9947-1961-0137148-5 - [18] \auN. Ikeda, M. Nagasawa and S. Watanabe, Branching Markov processes I, \tiJ. Math. Kyoto Univ., , 8 ((1968),)\spg233–\epg278.
- [19] \auN. Ikeda, M. Nagasawa and S. Watanabe, Branching Markov processes II, \tiJ. Math. Kyoto Univ., , 8 ((1968),)\spg365–\epg410.
- [20] V. G. Maz'ja, Sobolev Spaces, Springer-Verlag, Berlin, 1985.Mathematical Reviews (MathSciNet): MR817985
- [21] \auY. Ogura, A limit theorem for particle numbers in bounded domains of a branching diffusion process, \tiStoch. Proc. Appl., , 14 ((1983),)\spg19–\epg40.Mathematical Reviews (MathSciNet): MR676271
Digital Object Identifier: doi:10.1016/0304-4149(83)90044-3 - [22] R. G. Pinsky, Positive Harmonic Functions and Diffusion, Cambridge Univ. Press, Cambridge, 1995.Mathematical Reviews (MathSciNet): MR1326606
- [23] \auD. Ray, Stable processes with an absorbing barrier, \tiTrans. Amer. Math. Soc., , 87 ((1958),)\spg187–\epg197.
- [24] D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, 3rd ed., Springer-Verlag, Berlin, 1999.Mathematical Reviews (MathSciNet): MR1725357
- [25] \auB. A. Sevast'yanov, Branching stochastic processes for particles diffusing in a bounded domain with absorbing boundaries, \tiTheory Probab. Appl., , 3 ((1958),)\spg111–\epg126.Mathematical Reviews (MathSciNet): MR97867
- [26] \auY. Shiozawa, Extinction of branching symmetric $\alpha$-stable processes, \tiJ. Appl. Probab., , 43 ((2006),)\spg1077–\epg1090.Mathematical Reviews (MathSciNet): MR2274638
Digital Object Identifier: doi:10.1239/jap/1165505209
Project Euclid: euclid.jap/1165505209 - [27] \auY. Shiozawa and M. Takeda, Variational formula for Dirichlet forms and estimates of principal eigenvalues for symmetric $\alpha$-stable processes, \tiPotential Anal., , 23 ((2005),)\spg135–\epg151.Mathematical Reviews (MathSciNet): MR2139213
Digital Object Identifier: doi:10.1007/s11118-004-5392-7 - [28] \auM. Takeda, Conditional gaugeability and subcriticality of generalized Schrödinger operators, \tiJ. Funct. Anal., , 191 ((2002),)\spg343–\epg376.
- [29] M. Takeda, Large deviations for additive functionals of symmetric stable processes, to appear in J. Theoret. Probab.Mathematical Reviews (MathSciNet): MR2391248
Digital Object Identifier: doi:10.1007/s10959-007-0111-0 - [30] \auM. Takeda, Branching Brownian motion on Riemannian manifolds: Expectation of the number of branches hitting closed sets, \tiPotential Anal., , 27 ((2007),)\spg61–\epg72.Mathematical Reviews (MathSciNet): MR2314189
Digital Object Identifier: doi:10.1007/s11118-007-9039-3 - [31] \auM. Takeda and K. Tsuchida, Differentiability of spectral functions for symmetric $\alpha$-stable processes, \tiTrans. Amer. Math. Soc., , 359 ((2007),)\spg4031–\epg4054.Mathematical Reviews (MathSciNet): MR2302522
Digital Object Identifier: doi:10.1090/S0002-9947-07-04149-9 - [32] \auM. Takeda and T. Uemura, Subcriticality and gaugeability for symmetric $\alpha$-stable processes, \tiForum Math., , 16 ((2004),)\spg505–\epg517.
- [33] \auS. Watanabe, On stable processes with boundary conditions, \tiJ. Math. Soc. Japan., , 14 ((1962),)\spg170–\epg198.Mathematical Reviews (MathSciNet): MR144387
Digital Object Identifier: doi:10.2969/jmsj/01420170
Project Euclid: euclid.jmsj/1261062061 - [34] \auS. Watanabe, On the branching process for Brownian particles with an absorbing boundary, \tiJ. Math. Kyoto Univ., , 4 ((1965),)\spg385–\epg398.
- [35] S. Watanabe, Limit theorems for a class of branching processes, Markov Processes and Potential Theory (Ed. J. Chover), Wiley, New York, 1967, pp. 205–232.Mathematical Reviews (MathSciNet): MR237007

- You have access to this content.
- You have partial access to this content.
- You do not have access to this content.
More like this
- A long range dependence stable process and an infinite variance branching system
Bojdecki, Tomasz, Gorostiza, Luis G., and Talarczyk, Anna, The Annals of Probability, 2007 - Small-time behavior of beta coalescents
Berestycki, Julien, Berestycki, Nathanaël, and Schweinsberg, Jason, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, 2008 - Poisson representations of branching Markov and measure-valued branching processes
Kurtz, Thomas G. and Rodrigues, Eliane R., The Annals of Probability, 2011
- A long range dependence stable process and an infinite variance branching system
Bojdecki, Tomasz, Gorostiza, Luis G., and Talarczyk, Anna, The Annals of Probability, 2007 - Small-time behavior of beta coalescents
Berestycki, Julien, Berestycki, Nathanaël, and Schweinsberg, Jason, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, 2008 - Poisson representations of branching Markov and measure-valued branching processes
Kurtz, Thomas G. and Rodrigues, Eliane R., The Annals of Probability, 2011 - The Coupled Branching Process in Random Environment
Greven, A., The Annals of Probability, 1985 - Localization and Selection in a Mean Field Branching Random Walk in a Random Environment
Fleischmann, Klaus and Greven, Andreas, The Annals of Probability, 1992 - Occupation time fluctuations of an infinite-variance branching system in large dimensions
Bojdecki, Tomasz, Gorostiza, Luis G., and Talarczyk, Anna, Bernoulli, 2007 - State Dependent Multitype Spatial Branching Processes and their Longtime Behavior
Dawson, Donald and Greven, Andreas, Electronic Journal of Probability, 2003 - The TASEP speed process
Amir, Gideon, Angel, Omer, and Valkó, Benedek, The Annals of Probability, 2011 - Small deviations of stable processes and entropy of the associated random operators
Aurzada, Frank, Lifshits, Mikhail, and Linde, Werner, Bernoulli, 2009 - SLE and α-SLE driven by Lévy processes
Guan, Qing-Yang and Winkel, Matthias, The Annals of Probability, 2008