Journal of the Mathematical Society of Japan

Fourier-Borel transformation on the hypersurface of any reduced polynomial

Atsutaka KOWATA and Masayasu MORIWAKI

Full-text: Open access

Abstract

For a polynomial p on C n , the variety V p = { z C n ; p ( z ) = 0 } will be considered. Let Exp ( V p ) be the space of entire functions of exponential type on V p , and Exp ( V p ) its dual space. We denote by p the differential operator obtained by replacing each variable z j with / z j in p , and by O p ( C n ) the space of holomorphic solutions with respect to p . When p is a reduced polynomial, we shall prove that the Fourier-Borel transformation yields a topological linear isomorphism: Exp ( V p ) O p ( C n ) . The result has been shown by Morimoto, Wada and Fujita only for the case p ( z ) = z 1 2 + + z n 2 + λ ( n 2 ) .

Article information

Source
J. Math. Soc. Japan, Volume 60, Number 1 (2008), 65-73.

Dates
First available in Project Euclid: 24 March 2008

Permanent link to this document
https://projecteuclid.org/euclid.jmsj/1206367955

Digital Object Identifier
doi:10.2969/jmsj/06010065

Mathematical Reviews number (MathSciNet)
MR2392003

Zentralblatt MATH identifier
1131.42009

Subjects
Primary: 42B10: Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
Secondary: 32A15: Entire functions 32A45: Hyperfunctions [See also 46F15]

Keywords
Fourier-Borel transformation entire functions of exponential type holomorphic solutions of PDE reduced polynomial

Citation

KOWATA, Atsutaka; MORIWAKI, Masayasu. Fourier-Borel transformation on the hypersurface of any reduced polynomial. J. Math. Soc. Japan 60 (2008), no. 1, 65--73. doi:10.2969/jmsj/06010065. https://projecteuclid.org/euclid.jmsj/1206367955


Export citation

References

  • [1] S. S. Abhyankar, Local Analytic Geometry, Academic Press, New York, 1964.
  • [2] L. Ehrenpreis, Fourier Analysis in Several Complex Variables, Wiley-Interscience, New York, 1970.
  • [3] K. Fujita and M. Morimoto, Spherical Fourier-Borel transformation, Functional Analysis and Global Analysis, Springer-Verlag, Singapore, 1997, pp. 78–87.
  • [4] S. Helgason, Groups and Geometric Analysis, Academic Press, New York, 1984.
  • [5] \auA. Kowata and K. Okamoto, Harmonic Functions and the Borel-Weil Theorem, \tiHiroshima Math. J., , 4 ((1974),)\spg89–\epg97.
  • [6] \auA. Martineau, Équations différentielles d'ordre infini, \tiBull. Soc. Math. France, , 95 ((1967),)\spg109–\epg154.
  • [7] M. Morimoto, Analytic functionals on the sphere and their Fourier-Borel transformations, Complex Analysis, Banach Center Publications, 11, PWN-Polish Scientific Publishers, Warsaw, 1983, pp. 223–250.
  • [8] M. Morimoto, Analytic functionals on the sphere, Proceedings of the International Conference on Functional Analysis and Global Analysis, Southeast Asian Bull. Math., Special Issue, (1993), 93–99.
  • [9] M. Morimoto, Analytic Functionals on the Sphere, Translations of Math. Monographs, 178, Amer. Math. Soc., Providence, Rhode Island, 1998.
  • [10] \auM. Morimoto and K. Fujita, Analytic functionals and entire functionals on the complex light cone, \tiHiroshima Math. J., , 25 ((1995),)\spg493–\epg512.
  • [11] M. Morimoto and R. Wada, Analytic functionals on the complex light cone and their Fourier-Borel transformations, Algebraic Analysis, 1, Academic Press, 1988, pp. 439–455.
  • [12] G. Pólya and G. Szegö, Aufgaben und Lehrsätze aus der Analysis, Zweiter Band, Springer-Verlag, Berlin, 1925.
  • [13] F. Treves, Topological Vector Spaces, Distributions and Kernels, Academic Press, New York, 1967.