Journal of the Mathematical Society of Japan

On Meyer's function of hyperelliptic mapping class groups

Takayuki MORIFUJI

Full-text: Open access

Abstract

In this paper, we consider Meyer's function of hyperelliptic mapping class groups of orientable closed surfaces and give certain explicit formulae for it. Moreover we study geometric aspects of Meyer's function, and relate it to the η- invariant of the signature operator and Morita's homomorphism, which is the core of the Casson invariant of integral homology 3-spheres.

Article information

Source
J. Math. Soc. Japan, Volume 55, Number 1 (2003), 117-129.

Dates
First available in Project Euclid: 5 December 2007

Permanent link to this document
https://projecteuclid.org/euclid.jmsj/1196890845

Digital Object Identifier
doi:10.2969/jmsj/1196890845

Mathematical Reviews number (MathSciNet)
MR1939188

Zentralblatt MATH identifier
1031.57017

Subjects
Primary: 57R20: Characteristic classes and numbers
Secondary: 57N05: Topology of $E^2$ , 2-manifolds 57M10: Covering spaces 14H45: Special curves and curves of low genus

Keywords
mapping class group signature cocycle $\eta$-invariant Casson invariant

Citation

MORIFUJI, Takayuki. On Meyer's function of hyperelliptic mapping class groups. J. Math. Soc. Japan 55 (2003), no. 1, 117--129. doi:10.2969/jmsj/1196890845. https://projecteuclid.org/euclid.jmsj/1196890845


Export citation