Journal of the Mathematical Society of Japan

On the graded ring of Siegel modular forms of degree 2, level 3

Keiichi GUNJI

Full-text: Open access

Abstract

In general, it is difficult to determine the dimension of the space of Siegel modular forms with low weight. In this paper, we consider the spaces of modular forms belonging to the principal congruence subgroup of level 3 as the representation spaces of the finite symplectic group to calculate their dimensions.

Article information

Source
J. Math. Soc. Japan, Volume 56, Number 2 (2004), 375-403.

Dates
First available in Project Euclid: 3 October 2007

Permanent link to this document
https://projecteuclid.org/euclid.jmsj/1191418636

Digital Object Identifier
doi:10.2969/jmsj/1191418636

Mathematical Reviews number (MathSciNet)
MR2048465

Zentralblatt MATH identifier
1143.11317

Subjects
Primary: 11F46: Siegel modular groups; Siegel and Hilbert-Siegel modular and automorphic forms
Secondary: 11F27: Theta series; Weil representation; theta correspondences

Keywords
Siegel modular forms

Citation

GUNJI, Keiichi. On the graded ring of Siegel modular forms of degree 2, level 3. J. Math. Soc. Japan 56 (2004), no. 2, 375--403. doi:10.2969/jmsj/1191418636. https://projecteuclid.org/euclid.jmsj/1191418636


Export citation