## Journal of the Mathematical Society of Japan

- J. Math. Soc. Japan
- Volume 56, Number 2 (2004), 375-403.

### On the graded ring of Siegel modular forms of degree 2, level 3

#### Abstract

In general, it is difficult to determine the dimension of the space of Siegel modular forms with low weight. In this paper, we consider the spaces of modular forms belonging to the principal congruence subgroup of level 3 as the representation spaces of the finite symplectic group to calculate their dimensions.

#### Article information

**Source**

J. Math. Soc. Japan, Volume 56, Number 2 (2004), 375-403.

**Dates**

First available in Project Euclid: 3 October 2007

**Permanent link to this document**

https://projecteuclid.org/euclid.jmsj/1191418636

**Digital Object Identifier**

doi:10.2969/jmsj/1191418636

**Mathematical Reviews number (MathSciNet)**

MR2048465

**Zentralblatt MATH identifier**

1143.11317

**Subjects**

Primary: 11F46: Siegel modular groups; Siegel and Hilbert-Siegel modular and automorphic forms

Secondary: 11F27: Theta series; Weil representation; theta correspondences

**Keywords**

Siegel modular forms

#### Citation

GUNJI, Keiichi. On the graded ring of Siegel modular forms of degree 2, level 3. J. Math. Soc. Japan 56 (2004), no. 2, 375--403. doi:10.2969/jmsj/1191418636. https://projecteuclid.org/euclid.jmsj/1191418636