Journal of the Mathematical Society of Japan

Decay estimates of solutions for dissipative wave equations in RN with lower power nonlinearities

Ryo IKEHATA, Yasuaki MIYAOKA, and Takashi NAKATAKE

Full-text: Open access

Abstract

Optimal energy decay estimates will be derived for weak solutions to the Cauchy problem in RN(N=1,2,3) of dissipative wave equations, which have lower power nonlinearities |u|p-1u satisfying 1+2/N<pN/[N-2]+.

Article information

Source
J. Math. Soc. Japan, Volume 56, Number 2 (2004), 365-373.

Dates
First available in Project Euclid: 3 October 2007

Permanent link to this document
https://projecteuclid.org/euclid.jmsj/1191418635

Digital Object Identifier
doi:10.2969/jmsj/1191418635

Mathematical Reviews number (MathSciNet)
MR2048464

Zentralblatt MATH identifier
1056.35120

Subjects
Primary: 35L70: Nonlinear second-order hyperbolic equations
Secondary: 35B33: Critical exponents

Keywords
semilinear wave equation critical exponent dissipation Cauchy problem optimal decay estimates

Citation

IKEHATA, Ryo; MIYAOKA, Yasuaki; NAKATAKE, Takashi. Decay estimates of solutions for dissipative wave equations in $R^{N}$ with lower power nonlinearities. J. Math. Soc. Japan 56 (2004), no. 2, 365--373. doi:10.2969/jmsj/1191418635. https://projecteuclid.org/euclid.jmsj/1191418635


Export citation