Journal of the Mathematical Society of Japan

Fourier-Ehrenpreis integral formula for harmonic functions

Hideshi YAMANE

Full-text: Open access

Abstract

We give a Fourier-Ehrenpreis integral representation formula that expresses a harmonic function in a ball with a prescribed boundary value by superposition of harmonic exponentials.

Article information

Source
J. Math. Soc. Japan, Volume 56, Number 3 (2004), 729-735.

Dates
First available in Project Euclid: 2 October 2007

Permanent link to this document
https://projecteuclid.org/euclid.jmsj/1191334083

Digital Object Identifier
doi:10.2969/jmsj/1191334083

Mathematical Reviews number (MathSciNet)
MR2071670

Zentralblatt MATH identifier
1065.31006

Subjects
Primary: 32C30: Integration on analytic sets and spaces, currents {For local theory, see 32A25 or 32A27}
Secondary: 31A05: Harmonic, subharmonic, superharmonic functions 31A25: Boundary value and inverse problems

Keywords
currents the fundamental principle harmonic functions

Citation

YAMANE, Hideshi. Fourier-Ehrenpreis integral formula for harmonic functions. J. Math. Soc. Japan 56 (2004), no. 3, 729--735. doi:10.2969/jmsj/1191334083. https://projecteuclid.org/euclid.jmsj/1191334083


Export citation