Journal of the Mathematical Society of Japan

The homotopy of spaces of maps between real projective spaces

Kohhei YAMAGUCHI

Full-text: Open access

Abstract

We study the homotopy groups of spaces of continuous maps between real projective spaces and we generalize the results given in [5], [8] and [12]. In particular, we determine the rational homotopy types of these spaces and compute their fundamental groups explicitly.

Article information

Source
J. Math. Soc. Japan, Volume 58, Number 4 (2006), 1163-1184.

Dates
First available in Project Euclid: 21 May 2007

Permanent link to this document
https://projecteuclid.org/euclid.jmsj/1179759542

Digital Object Identifier
doi:10.2969/jmsj/1179759542

Mathematical Reviews number (MathSciNet)
MR2276186

Zentralblatt MATH identifier
1112.55008

Subjects
Primary: 55P15: Classification of homotopy type 55P62: Rational homotopy theory
Secondary: 55P10: Homotopy equivalences

Keywords
rational homotopy equivalence group action fundamental group

Citation

YAMAGUCHI, Kohhei. The homotopy of spaces of maps between real projective spaces. J. Math. Soc. Japan 58 (2006), no. 4, 1163--1184. doi:10.2969/jmsj/1179759542. https://projecteuclid.org/euclid.jmsj/1179759542


Export citation

References

  • F. R. Cohen, J. C. Moore and J. A. Neisendorfer, The double suspension and exponents of the homotopy groups of spheres, Ann. Math., 110 (1979), 549–565.
  • V. L. Hansen, On the space of maps of a closed surface into the $2$-sphere, Math. Scand., 35 (1974), 140–158.
  • A. Kozlowski and K. Yamaguchi, Spaces of holomorphic maps between complex projective spaces of degree one, Topology Appl., 132 (2003), 139–145.
  • M. Mimura, G. Nishida and H. Toda, Localization of CW complexes and its applications, J. Math. Soc. Japan, 23 (1971), 593–624.
  • W. Meier and R. Strebel, Homotopy group of acyclic spaces, Quart. J. Math. Oxford, 32 (1981), 81–95.
  • M. Mimura and H. Toda, Topology of Lie groups, I, II, Translation of Math. Monographs, 91, Amer. Math. Soc. Providence, 1991.
  • J. M. Møller, On spaces of maps between complex projective spaces, Proc. Amer. Math. Soc., 91 (1984), 471–476.
  • S. Sasao, The homotopy of $\mbox{Map}(\CP^m,\CP^n)$, J. London Math., 8 (1974), 193–197.
  • J. P. Serre, Groupes d'homotopie et classes de groupes abéliens, Ann. Math., 58 (1953), 258–294.
  • H. Toda, Composition methods in homotopy groups of spheres, Annals of Math. Studies, 49, Princeton Univ. Press, 1962.
  • G. W. Whitehead, On products in homotopy groups, Ann. Math., 47 (1946), 460–475.
  • K. Yamaguchi, The topology of spaces of maps between real projective spaces, J. Math. Kyoto Univ., 43 (2003), 503–507.
  • A. Kozlowski and K. Yamaguchi, Spaces of algebraic maps between real projective spaces, preprint.