Journal of the Mathematical Society of Japan

Algebraic structures on quasi-primary states in superconformal algebras

Go YAMAMOTO

Full-text: Open access

Abstract

Operator Product Expansions give algebraic structures on subspaces of quasi-primary vectors in superconformal algebras. The structures characterize the structures of superconformal algebras if they meet a criteria, while in some cases the spaces of quasi-primary vectors are finite dimensional. As an application the complete list of simple physical conformal superalgebras is given by classifying the corresponding algebraic structures on finite dimensional vector spaces. The list contains a one-parameter family of superconformal algebras with 4 supercharges that is simple for general values.

Article information

Source
J. Math. Soc. Japan, Volume 57, Number 2 (2005), 309-332.

Dates
First available in Project Euclid: 14 September 2006

Permanent link to this document
https://projecteuclid.org/euclid.jmsj/1158242061

Digital Object Identifier
doi:10.2969/jmsj/1158242061

Mathematical Reviews number (MathSciNet)
MR2123235

Zentralblatt MATH identifier
1082.81047

Subjects
Primary: 81R05: Finite-dimensional groups and algebras motivated by physics and their representations [See also 20C35, 22E70]
Secondary: 81R10: Infinite-dimensional groups and algebras motivated by physics, including Virasoro, Kac-Moody, $W$-algebras and other current algebras and their representations [See also 17B65, 17B67, 22E65, 22E67, 22E70] 17B68: Virasoro and related algebras

Keywords
Lie algebra Virasoro algebra Superconformal algebra Operator Product Expansion

Citation

YAMAMOTO, Go. Algebraic structures on quasi-primary states in superconformal algebras. J. Math. Soc. Japan 57 (2005), no. 2, 309--332. doi:10.2969/jmsj/1158242061. https://projecteuclid.org/euclid.jmsj/1158242061


Export citation

References

  • A. A. Belavin, A. M. Polyakov and A. B. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, Nuclear Phys. B, 241 (1984), 333–380.
  • R. Blumenhagen, M. Flohr, A. Kliem, W. Nahm, A. Recknagel and R. Varnhagen, $\CW$-algebras with two and three generators, Nuclear Phys. B, 361 (1991), 255–289.
  • S.-J. Cheng and V. G. Kac, A new N=6 superconformal algebra, Comm. Math. Phys., 186 (1997), 219–231.
  • C. Chevalley, The algebraic theory of spinors, Columbia Univ. Press, 1954.
  • Z. Hasiewicz, K. Thielemans and W. Troost, Superconformal algebras and Clifford algebras, J. Math. Phys., 31 (1990), 744–756.
  • V. G. Kac, Lie superalgebras, Adv. Math., 26 (1977), 8–96.
  • V. G. Kac, Vertex algebras for beginners, Second edition, Univ. Lecture Ser., vol.,10, Amer. Math. Soc., Providence, RI, 1998.
  • V. G. Kac, Superconformal algebras and transitive group actions on quadrics, Comm. Math. Phys., 186 (1997), 233–252.
  • V. G. Kac and J. W. Leur, On classification of superconformal algebras, In: Strings, (eds. S. J. Gates et al.), 88, World Sci., 1989, pp.,77–106.
  • M. Primc, Vertex algebras generated by Lie algebras, J. Pure Appl. Algebra, 135 (1999), 253–293, math/9901095.
  • A. Sevrin, W. Troost and A. Proeyen, Superconformal algebras in two dimensions with $N=4$, Phys. Lett. B, 208 (1988), 447–450.