Journal of the Mathematical Society of Japan

New affine minimal ruled hypersurfaces

Masao KATOU

Full-text: Open access

Abstract

In this paper, we study a new class of affine minimal hypersurfaces as higher dimensional analogues of affine minimal ruled surfaces.

Article information

Source
J. Math. Soc. Japan, Volume 58, Number 3 (2006), 869-883.

Dates
First available in Project Euclid: 23 August 2006

Permanent link to this document
https://projecteuclid.org/euclid.jmsj/1156342041

Digital Object Identifier
doi:10.2969/jmsj/1156342041

Mathematical Reviews number (MathSciNet)
MR2254414

Zentralblatt MATH identifier
1100.53018

Subjects
Primary: 53A15: Affine differential geometry

Keywords
Blaschke immersion affine minimal ruled surface

Citation

KATOU, Masao. New affine minimal ruled hypersurfaces. J. Math. Soc. Japan 58 (2006), no. 3, 869--883. doi:10.2969/jmsj/1156342041. https://projecteuclid.org/euclid.jmsj/1156342041


Export citation

References

  • J. L. M. Barbosa and J. A. Delgado, Ruled submanifolds of space forms with mean curvature of nonzero constant length, Amer. J. Math., 106 (1984), 763–780.
  • M. Belkhelfa and M. Katou, Affine semiparallel surfaces with constant Pick invariant, Hokkaido Math. J., 34 (2005), 355–374.
  • V. Hájková and O. Kowalski, Intrinsic characterization of completely ruled hypersurfaces, Publ. Math. Debrecen, 54 (1999), 55–62.
  • W. Jelonek, Affine surfaces with parallel shape operators, Ann. Polon. Math., 56 (1992), 179–186.
  • M. A. Magid and P. J. Ryan, Flat affine spheres in $\bm{R}^3$, Geom. Dedicata, 33 (1990), 277–288.
  • K. Nomizu and T. Sasaki, Affine Differential Geometry: Geometry of Affine Immersions, Cambridge University Press, 1994.
  • U. Simon, Local classification of twodimensional affine spheres with constant curvature metric, Differ. Geom. Appl., 1 (1991), 123–132.