Open Access
October, 2005 An analogue of Connes-Haagerup approach for classification of subfactors of type III$_{\bf 1}$
Toshihiko MASUDA
J. Math. Soc. Japan 57(4): 959-1001 (October, 2005). DOI: 10.2969/jmsj/1150287301

Abstract

Popa proved that strongly amenable subfactors of type I I I 1 with the same type I I and type I I I principal graphs are completely classified by their standard invariants. In this paper, we present a different proof of this classification theorem based on Connes and Haagerup's arguments on the uniqueness of the injective factor of type I I I 1 .

Citation

Download Citation

Toshihiko MASUDA. "An analogue of Connes-Haagerup approach for classification of subfactors of type III$_{\bf 1}$." J. Math. Soc. Japan 57 (4) 959 - 1001, October, 2005. https://doi.org/10.2969/jmsj/1150287301

Information

Published: October, 2005
First available in Project Euclid: 14 June 2006

zbMATH: 1094.46034
MathSciNet: MR2183581
Digital Object Identifier: 10.2969/jmsj/1150287301

Subjects:
Primary: 46L37
Secondary: 46L40

Keywords: modular automorphisms , relative bicentralizer , standard invariants , subfactors of type $\mathrm{III}_1$ , symmetric enveloping algebras

Rights: Copyright © 2005 Mathematical Society of Japan

Vol.57 • No. 4 • October, 2005
Back to Top