Journal of Integral Equations and Applications

Blow-up of solutions for semilinear fractional Schrödinger equations

A.Z. Fino, I. Dannawi, and M. Kirane

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


We consider the Cauchy problem in $\mathbb {R}^N$, $N \geq 1$, for the semi-linear Schr\"odinger equation with fractional Laplacian. We present the local well-posedness of solutions in $H^{{\alpha }/{2}}(\mathbb {R}^N)$, $0\lt \alpha \lt 2$. We prove a finite-time blow-up result, under suitable conditions on the initial data.

Article information

J. Integral Equations Applications, Volume 30, Number 1 (2018), 67-80.

First available in Project Euclid: 10 April 2018

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 35B44: Blow-up 35Q55: NLS-like equations (nonlinear Schrödinger) [See also 37K10]

Schrödinger equations fractional Laplacian blow-up


Fino, A.Z.; Dannawi, I.; Kirane, M. Blow-up of solutions for semilinear fractional Schrödinger equations. J. Integral Equations Applications 30 (2018), no. 1, 67--80. doi:10.1216/JIE-2018-30-1-67.

Export citation


  • P. Baras and R. Kersner, Local and global solvability of a class of semilinear parabolic equations, J. Diff. Eqs. 68 (1987), 238–252.
  • T. Cazenave, Semilinear Schrödinger equations, Courant Lect. Notes Math. 10, American Mathematical Society, Providence, 2003.
  • T. Cazenave and A. Haraux, Introduction aux problèmes d'évolution semi-linéaires, Ellipses, Paris, 1990.
  • Y. Cho, G. Hwang, H. Hajaiej and T. Ozawa, On the orbital stability of fractional Schr ödinger equations, Comm. Pure Appl. Anal. 13 (2014), 1267–1282.
  • B. Guo and D. Huang, Existence and stability of standing waves for nonlinear fractional Schrödinger equations, J. Math. Phys. 53 (2012).
  • M. Ikeda and T. Inui, Small data blow-up of $L^2$ or $H^1$-solution for the semilinear Schrödinger equation without gauge invariance, J. Evol. Eqs. 15 (2015), 571–581.
  • M. Ikeda and Y. Wakasugi, Small-data blow-up of $L^2$-solution for the nonlinear Schrödinger equation without gauge invariance, Differ. Int. Eqs. 26 (2013), 1275–1285.
  • A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and applications of fractional differential equations, North-Holland Math. Stud. 204, Elsevier, Amsterdam, 2006.
  • M. Kirane and M. Qafsaoui, Global nonexistence for the Cauchy problem of some nonlinear reaction-diffusion systems, J. Math. Anal. Appl. 268 (2002), 217–243.
  • N. Laskin, Fractional quantum mechanics and Lévy integral, Phys. Lett. 268 (2000), 298–305.
  • ––––, Fractional quantum mechanics, Phys. Rev. 62 (2000), 3135.
  • R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep. 339 (2000), 1–77.
  • ––––, The restaurant at the random walk: Recent developments in the description of anomalous transport by fractional dynamics, J. Phys. 37 (2004), 161–208.
  • E. Mitidieri and S.I. Pohozaev, A priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities, Proc. Steklov. Inst. Math. 234 (2001), 1–383.
  • A. Pazy, Semigroup of linear operator and applications to partial differential equation, Springer-Verlag, Berlin, 1983.
  • P. Rozmej and B. Bandrowski, On fractional Schr ödinger equation, Comp. Meth. Sci. Tech. 16 (2010), 191–194.
  • Q.S. Zhang, A blow up result for a nonlinear wave equation with damping: The critical case, C.R. Acad. Sci. Paris 333 (2001), 109–114.