Journal of Integral Equations and Applications

Boundary element methods for parabolic boundary control problems

Thanh Xuan Phan and Olaf Steinbach

Full-text: Open access

Abstract

In this paper we analyze constrained optimal Dirichlet boundary control problems subject to the linear heat equation. We propose using boundary integral equations to solve the coupled optimality system, and we present results on unique solvability and related a~priori error estimates for a symmetric Galerkin boundary element method. A numerical example confirms the analytical results.

Article information

Source
J. Integral Equations Applications, Volume 26, Number 1 (2014), 53-90.

Dates
First available in Project Euclid: 17 April 2014

Permanent link to this document
https://projecteuclid.org/euclid.jiea/1397764954

Digital Object Identifier
doi:10.1216/JIE-2014-26-1-53

Mathematical Reviews number (MathSciNet)
MR3195115

Zentralblatt MATH identifier
1288.65135

Citation

Phan, Thanh Xuan; Steinbach, Olaf. Boundary element methods for parabolic boundary control problems. J. Integral Equations Applications 26 (2014), no. 1, 53--90. doi:10.1216/JIE-2014-26-1-53. https://projecteuclid.org/euclid.jiea/1397764954


Export citation

References

  • R.A. Adams, Sobolev spaces, Academic Press, New York, 1975.
  • D.N. Arnold and P.J. Noon, Boundary integral equations of the first kind of the heat equation, in Boundary elements IX, C.A. Brebbia, G. Kuhn and W.L. Wendland, eds., Springer, Berlin, 1987.
  • M. Costabel, Boundary integral operators for the heat equation, Int. Equat. Oper. Theor. 13 (1990), 498-552.
  • M. Hinze, R. Pinnau, M. Ulbrich and S. Ulbrich, Optimization with PDE constraints, Math. Model. Theor. Appl. 23, Springer, Heidelberg, 2009.
  • G.C. Hsiao and W.L. Wendland, Boundary integral equations, Springer, Heidelberg, 2008.
  • K. Kunisch and B. Vexler, Constrained Dirichlet boundary control in $L^2$ for a class of evolution equations, SIAM J. Contr. Optim. 46 (2007), 1726-1753.
  • J.L. Lions, Optimal control of systems governed by partial differential equations, Springer, Berlin, 1971.
  • J.L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications, vol. II, Springer, New York, 1972.
  • W. McLean, Strongly elliptic systems and boundary integral equations, Cambridge University Press, Cambridge, 2000.
  • P.J. Noon, The single layer heat potential and Galerkin boundary element methods for the heat equation, Ph.D. dissertation, The University of Maryland, College Park, 1988.
  • G. Of, T.X. Phan and O. Steinbach, Boundary element methods for Dirichlet boundary control problems, Math. Meth. Appl. Sci. 33 (2010), 2187-2205.
  • T.X. Phan, Boundary element methods for boundary control problems, Ph.D. thesis, TU Graz, 2011.
  • G. Schmidt and B.N. Khoromskij, Boundary integral equations for the biharmonic Dirichlet problem on nonsmooth domains, J. Int. Equat. Appl. 11 (1999), 217-253.
  • O. Steinbach, Numerical approximation methods for elliptic boundary value problems, Finite and boundary elements, Springer, New York, 2008.
  • –––, Boundary element methods for variational inequalities, Numer. Math. 126 (2014), 173-197.
  • F. Troeltzsch, Optimale Steuerung partieller Differentialgleichungen, Theorie, Verfahren, Anwendungen, Vieweg, Braunschweig, 2005.
  • R. Winther, Error estimates for a Galerkin approximation of a parabolic control problem, Ann. Mat. Pura Appl. 107 (1978), 173-206. \noindentstyle