Journal of Integral Equations and Applications

Surface integral formulation of the interior transmission problem

Anne Cossonnière and Houssem Haddar

Full-text: Open access

Abstract

We consider a surface integral formulation of the so-called interior transmission problem that appears in the study of inverse scattering problems from dielectric inclusions. In the case where the magnetic permeability contrast is zero, the main originality of our approach consists in still using classical potentials for the Helmholtz equation but in weaker trace space solutions. One major outcome of this study is to establish Fredholm properties of the problem for relaxed assumptions on the material coefficients. For instance, we allow the contrast to change sign inside the medium. We also show how one can retrieve discreteness results for transmission eigenvalues in some particular situations.

Article information

Source
J. Integral Equations Applications, Volume 25, Number 3 (2013), 341-376.

Dates
First available in Project Euclid: 16 December 2013

Permanent link to this document
https://projecteuclid.org/euclid.jiea/1387207802

Digital Object Identifier
doi:10.1216/JIE-2013-25-3-341

Mathematical Reviews number (MathSciNet)
MR3161617

Zentralblatt MATH identifier
1366.78019

Citation

Cossonnière, Anne; Haddar, Houssem. Surface integral formulation of the interior transmission problem. J. Integral Equations Applications 25 (2013), no. 3, 341--376. doi:10.1216/JIE-2013-25-3-341. https://projecteuclid.org/euclid.jiea/1387207802


Export citation

References

  • M. Abramowitz and I. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, Dover Publications, New York, 1964.
  • A-S. Bonnet-BenDhia, L. Chesnel and H. Haddar, On the use of T-coercivity to study the interior transmission eigenvalue problem, C.R. Acad. Sci. Math. 11-12 (2011), 647–651.
  • F. Cakoni and D. Colton, Qualitative methods in inverse scattering theory, in Interaction of mechanics and mathematics, An introduction, Springer-Verlag, Berlin, 2006.
  • F. Cakoni, D. Colton and H. Haddar, The computation of lower bounds for the norm of the index of refraction in an anisotropic media, J. Integral Equat. Appl. 21 (2009), 203-227.
  • –––, The interior transmission problem for regions with cavities, SIAM J. Math. Anal. 42 (2010), 145-162.
  • F. Cakoni, D. Colton and P. Monk, On the use of transmission eigenvalues to estimate the index of refraction from far field data, Inverse Problems 23 (2007), 507-522.
  • F. Cakoni, A. Cossonnière and H. Haddar, Transmission eigenvalues for inhomogeneous media containing obstacles, Inverse Prob. Imag. 6 (2012), 373-398.
  • F. Cakoni, D. Gintides and H. Haddar, The existence of an infinite discrete set of transmission eigenvalues, SIAM J. Math. Anal. 42 (2010), 237-255.
  • F. Cakoni and H. Haddar, On the existence of transmission eigenvalues in an inhomogeneous medium, Appl. Anal. 88 (2009), 475-493.
  • F. Collino, A. Cossonnière, M'B. Fares and H. Haddar, A numerical method to compute transmission eigenvalues based on surface integral equations, 2012, preprint.
  • D. Colton and R. Kress, Inverse acoustic and eletromagnetic scattering theory, 2nd edition, Springer, New York, 1998.
  • D. Colton, L.Päivärinta and J. Sylvester, The interior transmission problem, Inverse Prob. Imag. 1 (2007), 13-28.
  • A Cossonnière, Valeurs propres de transmission et leur utilisation dans l'identification d'inclusions à partir de mesures électromagnétiques, Ph.D. thesis, University of Toulouse, 2011.
  • A. Cossonnière and H. Haddar, The electromagnetic interior transmission problem for regions with cavities, SIAM J. Math. Anal. 43 (2011), 1698-1715.
  • M. Hitrik, K. Krupchyk, P. Ola and L. Päivärinta, Transmission eigenvalues for elliptic operators, SIAM J. Math. Anal. 43 (2011), 2630-2639.
  • G. Hsiao and W. Wendland, Boundary integral equations, Springer, New York, 2008.
  • A. Kirsch, Characterization of the shape of a scattering obstacle using the spectral data of the far field operator, Inverse Prob. 14 (1998), 1489-1512.
  • –––, A note on Sylvester's proof of discreteness of interior transmission eigenvalues, 2011.
  • A. Kirsch and N. Grinberg, The factorization method for inverse problems, Oxford Lect. Ser. Math. Appl. 36, Oxford University Press, Oxford, 2008.
  • E. Lakshtanov and B. Vainberg, Ellipticity in the interior transmission problem in anisotropic media, SIAM J. Math. Anal. 44 (2012), 1165-1174.
  • –––, Remarks on interior transmission eigenvalues, Weyl formula and branching billiards, J. Phys. Math. Theor. 45 (2012), 125202 (10 pp.).
  • W. McLean, Strongly elliptic systems and boundary integral equations, Cambridge University Press, Cambridge, 2000.
  • J.C. Nédélec, Acoustic and electromagnetic equations, Appl. Math. Sci. 144, Springer, New York, 2001.
  • L. Päivärinta and J. Sylvester, Transmission eigenvalues, SIAM J. Math. Anal. 40 (2008), 738-753.
  • J. Sylvester, Discreteness of transmission eigenvalues via upper triangular compact operators, SIAM J. Math. Anal. 44 (2012), 373-398. \noindentstyle