Journal of Integral Equations and Applications

Fixed point theorems for convex-power condensing operators relative to the weak topology and appli- cations to Volterra integral equations

Ravi P. Agarwal, Donal O'Regan, and Mohamed-Aziz Taoudi

Full-text: Open access

Article information

Source
J. Integral Equations Applications, Volume 24, Number 2 (2012), 167-181.

Dates
First available in Project Euclid: 22 June 2012

Permanent link to this document
https://projecteuclid.org/euclid.jiea/1340369460

Digital Object Identifier
doi:10.1216/JIE-2012-24-2-167

Mathematical Reviews number (MathSciNet)
MR2945800

Zentralblatt MATH identifier
1252.47051

Subjects
Primary: 47H10: Fixed-point theorems [See also 37C25, 54H25, 55M20, 58C30] 47H30: Particular nonlinear operators (superposition, Hammerstein, Nemytskiĭ, Uryson, etc.) [See also 45Gxx, 45P05]

Keywords
Convex-power condensing operators fixed point theorems measure of weak noncompactness

Citation

Agarwal, Ravi P.; O'Regan, Donal; Taoudi, Mohamed-Aziz. Fixed point theorems for convex-power condensing operators relative to the weak topology and appli- cations to Volterra integral equations. J. Integral Equations Applications 24 (2012), no. 2, 167--181. doi:10.1216/JIE-2012-24-2-167. https://projecteuclid.org/euclid.jiea/1340369460


Export citation

References

  • R.P. Agarwal, D. O'Regan and M.A. Taoudi, Browder-Krasnoselskii-type fixed point theorems in Banach spaces, Fixed Point Theory Appl. 2010, 243716.
  • O. Arino, S. Gautier and J.P. Penot, A fixed point theorem for sequentially continuous mappings with applications to ordinary differential equations, Funkc. Ekvac. 27 (1984), 273-279.
  • J. Banaś and J. Rivero, On measures of weak noncompactness, Ann. Mat. Pura Appl. 151 (1988), 213-224.
  • D. Bugajewski, On the existence of weak solutions of integral equations in Banach spaces, Comment. Math. Univ. Carolin. 38 (1994), 35-41.
  • M. Cichoń, On solutions of differential equations in Banach spaces, Nonlinear Anal. 60 (2005), 651-667.
  • M. Cichoń, Weak solutions of differential equations in Banach spaces, Discuss. Math. Differential Incl. 15 (1995), 5-14.
  • M. Cichoń and I. Kubiaczyk, Existence theorems for the Hammerstein integral equation, Discuss. Math. Differential Incl. 16 (1996), 171-177.
  • E. Cramer, V. Lakshmiksntham and A.R. Mitchell, On the existence of weak solutions of differential equations in nonreflexive Banach spaces, Nonlinear Anal. 2 (1978), 169-177.
  • F.S. De Blasi, On a property of the unit sphere in Banach spaces, Bull. Math. Soc. Sci. Math. Roum. 21 (1977), 259-262.
  • N. Dunford and J.T. Schwartz, Linear operators, Part I: General theory, Interscience Publishers, New York, 1958.
  • R. Engelking, General topology, Heldermann Verlag, Berlin, 1989.
  • J. García-Falset, Existence of fixed points and measure of weak noncompactness, Nonlinear Anal. 71 (2009), 2625-2633.
  • R.F. Geitz, Pettis integration, Proc. Amer. Math. Soc. 82 (1981), 81-86.
  • I. Kubiaczyk, On a fixed point theorem for weakly sequentially continuous mapping, Discuss. Math. Differential Incl. 15 (1995), 15-20.
  • I. Kubiaczyk and S. Szufla, Kneser's theorem for weak solutions of ordinary differential equations in Banach spaces, Publ. Inst. Math. (Beograd) 46 (1982), 99-103.
  • L. Liu, F. Guo, C. Wu and Y. Wu, Existence theorems of global solutions for nonlinear Volterra type integral equations in Banach spaces, J. Math. Anal. Appl. 309 (2005), 638-649.
  • A.R. Mitchell and C.K.L. Smith, An existence theorem for weak solutions of differential equations in Banach spaces, in Nonlinear equations in abstract spaces, V. Lakshmikantham, ed., Academic Press, New York, 1978.
  • D. O'Regan, Weak solutions of ordinary differential equations in Banach spaces, Appl. Math. Lett. 12 (1999), 101-105.
  • –––, Integral equations in reflexive Banach spaces and weak topologies, Proc. Amer. Math. Soc. 124 (1996), 607-614.
  • –––, Operator equations in Banach spaces relative to the weak topology, Arch. Math. 71 (1998), 123-136.
  • –––, Fixed point theory for weakly sequentially continuous mappings, Math. Comput. Model. 27 (1998), 1-14.
  • J. Sun and X. Zhang, The fixed point theorem of convex-power condensing operator and applications to abstract semilinear evolution equations, Acta Math. Sinica 48 (2005), 339-446 (in Chinese).
  • A. Szep, Existence theorems for weak solutions of ordinary differential equations in reflexive Banach spaces, Studia Sci. Math. Hungar. 6 (1971), 197-203.
  • E. Zeidler, Nonlinear functional analysis and its applications, I: Fixed point theorems, Springer-Verlag, New York, 1986.
  • Guowei Zhang, Tongshan Zhang and Tie Zhang, Fixed point theorems of Rothe and Altman types about convex-power condensing operator and application, Appl. Math. Comput. 214 (2009), 618-623. \noindentstyle