Journal of Integral Equations and Applications

Kernel perturbations for Volterra convolution integral equations

F.R. De Hoog and R.S. Anderssen

Full-text: Open access

Article information

Source
J. Integral Equations Applications, Volume 22, Number 3 (2010), 427-441.

Dates
First available in Project Euclid: 18 October 2010

Permanent link to this document
https://projecteuclid.org/euclid.jiea/1287409297

Digital Object Identifier
doi:10.1216/JIE-2010-22-3-427

Mathematical Reviews number (MathSciNet)
MR2727325

Zentralblatt MATH identifier
1253.45001

Citation

Hoog, F.R. De; Anderssen, R.S. Kernel perturbations for Volterra convolution integral equations. J. Integral Equations Applications 22 (2010), no. 3, 427--441. doi:10.1216/JIE-2010-22-3-427. https://projecteuclid.org/euclid.jiea/1287409297


Export citation

References

  • R.S. Anderssen, A.R. Davies and F.R. de Hoog, On the interconversion integral equation for relaxation and creep, ANZIAM J. %(CTAC 2006) 48 (2007), C249-C266.
  • --------, On the sensitivity of interconversion between relaxation and creep, Rheologica Acta 47 (2008), 159-167.
  • --------, On the Volterra integral equation relating creep and relaxation, Inverse Problems 24 (2008), 035009 (p. 13).
  • R.A. Berk, Statistical learning from a regression perspective, Springer, New York, 2008.
  • F.R. de Hoog, R.S. Anderssen and M.A. Lukas, The application and numerical solution of integral equations, Sijthoff & Noordhoff, The Netherlands, 1980.
  • W. Feller, An introduction to probability theory and its applications, Volume II, John Wiley & Sons, New York, 1966.
  • J. Ferry, Viscoelastic properties of polymers, Wiley, New York, 1980.
  • G. Gripenberg, S.-O. Londen and O. Staffans, Volterra integral and functional equations, Encycl. Math. Appl. 34, Cambridge University Press, Cambridge, 1990.
  • C.W. Groetsch, A simple numerical model for nonlinear warming of a slab, J. Comp. Appl. Math. 38 (1990), 149-156.
  • --------, Integral equations of the first kind, inverse problems and regularization: A crash course, J. Phys: Conference Series 73 (2007), 012001.
  • B. Gross, Mathematical structure of the theories of viscoelasticity, Hermann, Paris, 1953.
  • I. L. Hopkins and R. W. Hamming. On creep and relaxation. J. Appl. Phys., 28:906�909, 1957.
  • P. Linz, A survey of methods for the solution of Volterra equations of the first kind, in The application and numerical solution of integral equations, R.S. Anderssen, F.R. de Hoog and M.A. Lukas, eds., %:183�194, 1980.
  • --------, Analytic and numerical methods for volterra equations, SIAM Studies in Applied Mathematics, Philadelphia, 1985.
  • R.J. Loy and R.S. Anderssen, Linear viscoelastic interconversion relationships, in preparation.
  • D.W. Mead, Numerical interconversion of linear viscoelastic material functions, J. Rheol. 38 (1994), 1769-1795.
  • A. Nikonov, A.R. Davies and I. Emri, The determination of creep and relaxation functions from a single experiment, J. Rheol. 49 (2005), 1193-1211.
  • D.J. Plazek and I. Echeverria, Don't cry for me Charlie Bbrown, or with compliance comes comprehension, J. Rheol. 44 (2000), 831-841.
  • G. Psarrakos, Asymptotic results for heavy-tailed distributions using defective renewal equations, Stat. Prob. Lett. 79 (2009), 774-779.
  • L.A. Sakhnovich, Integral equations with difference kernels on finite intervals, Birkhauser Verlag, Berlin, 1996.
  • J.E. Slotine and W. Li, Applied nonlinear control, Prentice Hall, Englewood Cliffs, New Jersey, 1991.
  • N. Su, F. Liu and J. Barringer, Forecasting floods at variable catchment scales using stochastics systems hydro-geographic models and digital topographic data, Proc. MODSIM 1997, pages 1695�1700.
  • A.I. Zayed, Handbook of function and generalized function transformations, CRC Press, Boca Raton, 1996.