Journal of Integral Equations and Applications

Regularization of ill-posed linear equations by the non- stationary augmented Lagrangian method

Klaus Frick and Otmar Scherzer

Full-text: Open access

Article information

J. Integral Equations Applications, Volume 22, Number 2 (2010), 217-257.

First available in Project Euclid: 21 June 2010

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier


Frick, Klaus; Scherzer, Otmar. Regularization of ill-posed linear equations by the non- stationary augmented Lagrangian method. J. Integral Equations Applications 22 (2010), no. 2, 217--257. doi:10.1216/JIE-2010-22-2-217.

Export citation


  • R.A. Adams, Sobolev spaces, Pure Appl. Math. 65, Academic Press, New York, 1975.
  • V. Barbu, Nonlinear semigroups and differential equations in Banach spaces, Editura Academiei Republicii Socialiste Romnia, Bucharest, 1976.
  • H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Math. Stud. 5, North-Holland Publishing Co, Amsterdam, 1973.
  • M. Burger, K. Frick, S. Osher and O. Scherzer, Inverse total variation flow, Multiscale Model. Simul. 6 (2007), 365-395 (electronic).
  • M. Burger, S. Osher, J. Xu and G. Gilboa, Nonlinear inverse scale space methods for image restoration, in N. Paragios, O.D. Faugeras, T. Chan and C. Schnörr, eds., VLSM, Lecture Notes Comp. Sci. 3752, %pages 25{36. Springer, New York, 2005.
  • M. Burger, E. Resmerita and L. He, Error estimation for Bregman iterations and inverse scale space methods in image restoration, Computing 81 (2007), 109-135.
  • T.F. Chan and S. Esedoglu, Aspects of total variation regularized $L^1$ function approximation, SIAM J. Appl. Math. 65 (2005), 1817-1837.
  • G.A.G. Cidade, C. Anteneodo, N.C. Roberty and A.J.S. Neto, A generalized approach for atomic force microscopy image restoration with Bregman distances as Tikhonov regularization terms, Inverse Probl. Eng. 8 (2000), 457-472.
  • I. Ekeland and R. Temam, Convex analysis and variational problems, volume 1 Stud. Math. Appl. 1, North-Holland Publishing Co., Amsterdam, 1976.
  • L.C. Evans and R.F. Gariepy, Measure theory and fine properties of functions, Stud. Adv. Math., CRC Press, Boca Raton, FL, 1992.
  • M. Fortin and R. Glowinski, Augmented Lagrangian methods, Stud. Math. Appl. 15, in Applications to the numerical solution of boundary value problems, North-Holland Publishing Co., Amsterdam, 1983. Translated from the French by B. Hunt and D.C. Spicer.
  • K. Frick, The augmented Lagrangian method and related evolution equations, PhD thesis, Leopold-Franzens University, Innsbruck, 2008.
  • K. Frick and O. Scherzer, Convex inverse scale spaces, in SSVM, F. Sgallari, A. Murli, and N. Paragios, eds., Lecture Notes Comp. Sci. 4485, %pages 313{325. Springer, New York, 2007.
  • C.W. Groetsch, Stable approximate evaluation of unbounded operators, Lecture Notes Math. 1894, Springer-Verlag, Berlin, 2007.
  • C.W. Groetsch and O. Scherzer, Non-stationary iterated Tikhonov-Morozov method and third-order differential equations for the evaluation of unbounded operators, Math. Methods Appl. Sci. 23 (2000), 1287-1300.
  • O. Güler, On the convergence of the proximal point algorithm for convex minimization, SIAM J. Control Optim. 29 (1991), 403-419.
  • M.R. Hestenes, Multiplier and gradient methods, J. Optimization Theory Appl. 4 (1969), 303-320.
  • B. Hofmann, B. Kaltenbacher, C. Pöschl and O. Scherzer, A convergence rates result for Tikhonov regularization in Banach spaces with non-smooth operators, Inverse Problems 23 (2007), 987-1010.
  • S. Hu and N.S. Papageorgiou, Handbook of multivalued analysis, Vol. I, Math. Appl. 419, Kluwer Academic Publishers, Dordrecht, 1997. %Theory.
  • K. Ito and K. Kunisch, An active set strategy based on the augmented Lagrangian formulation for image restoration, M2AN Math. Model. Numer. Anal. 33 (1999), 1-21.
  • K. Kunisch and W. Ring, Regularization of nonlinear illposed problems with closed operators, Numer. Funct. Anal. Optim. 14 (1993), 389-404.
  • J. Locker and P.M. Prenter, Regularization with differential operators. I. General theory, J. Math. Anal. Appl. 74 (1980), 504-529.
  • V.A. Morozov, Methods for solving incorrectly posed problems, Springer-Verlag, New York, 1984. Translated from the Russian by A. B. Aries, Translation edited by Z. Nashed.
  • M. Nashed, ed., Generalized inverses and applications, Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1976.
  • R.H. Nochetto, G. Savaré and C. Verdi, A posteriori error estimates for variable time-step discretizations of nonlinear evolution equations, Comm. Pure Appl. Math. 53 (2000), 525-589.
  • S. Osher, M. Burger, D. Goldfarb, J. Xu and W. Yin, An iterative regularization method for total variation-based image restoration, Multiscale Model. Simul. 4 (2005), 460-489 (electronic).
  • M.J.D. Powell, A method for nonlinear constraints in minimization problems, in Optimization (Symposium, Univ. Keele, Keele, 1968), Academic Press, London, 1969.%283-298
  • E. Resmerita, On total convexity, Bregman projections and stability in Banach spaces, J. Convex Anal. 11 (2004), 1-16.
  • R.T. Rockafellar, Augmented Lagrangians and applications of the proximal point algorithm in convex programming, Math. Oper. Res. 1 (1976), 97-116.
  • O. Scherzer, M. Grasmair, H. Grossauer, M. Haltmeier and F. Lenzen, Variational methods in imaging, Appl. Math. Sci. 167, Springer, New York, 2009.
  • T.I. Seidman and C.R. Vogel, Well-posedness and convergence of some regularisation methods for nonlinear ill posed problems, Inverse Problems 5 (1989), 227-238.
  • S. Setzer, Split Bregman algorithm, Douglas-Rachford splitting and frame shrinkage, in Scale space and variational methods in computer vision, Lecture Notes Comp. Sci. 5567, Springer, Berlin, 2009. %464{476,
  • D.W. Showalter, Representation and computation of the pseudoinverse, Proc. Amer. Math. Soc. 18 (1967), 584-586.
  • D.W. Showalter and A. Ben-Israel, Representation and computation of the generalized inverse of a bounded linear operator between Hilbert spaces, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 48 (1970), 184-194.
  • E. Tadmor, S. Nezzar and L. Vese, A multiscale image representation using hierarchical (BV, $L^2$) decompositions, Multiscale Model Simul. 2 (2004), 554-579.
  • X. Tai, K. Mørken, M. Lysaker, and K.-A. Lie, eds., Scale space and variational methods in computer vision, Lect. Notes Comp. Sci. 5567, Springer, Berlin, 2009. %Second International
  • D. Werner, Funktionalanalysis, Springer Verlag, Berlin, 2002.
  • W.P. Ziemer, Weakly differentiable functions, Springer Verlag, New York, 1989.