Journal of Integral Equations and Applications

Integro-differential equations of the first order with autoconvolution integral

J. Janno and L. V. Wolfersdorf

Full-text: Open access

Article information

Source
J. Integral Equations Applications, Volume 21, Number 1 (2009), 39-75.

Dates
First available in Project Euclid: 24 March 2009

Permanent link to this document
https://projecteuclid.org/euclid.jiea/1237900765

Digital Object Identifier
doi:10.1216/JIE-2009-21-1-39

Mathematical Reviews number (MathSciNet)
MR2491093

Zentralblatt MATH identifier
1204.45012

Subjects
Primary: 45J05: Integro-ordinary differential equations [See also 34K05, 34K30, 47G20]
Secondary: 45G10: Other nonlinear integral equations 45D05: Volterra integral equations [See also 34A12] 45M05: Asymptotics

Keywords
Integro-differential equations autoconvolution equations asymptotics of solution

Citation

Janno, J.; Wolfersdorf, L. V. Integro-differential equations of the first order with autoconvolution integral. J. Integral Equations Applications 21 (2009), no. 1, 39--75. doi:10.1216/JIE-2009-21-1-39. https://projecteuclid.org/euclid.jiea/1237900765


Export citation

References

  • L. Berg, Asymptotische Darstellungen und Entwicklungen, Deutscher Verlag der Wissenschaften, Berlin, (1968).
  • L. Berg and L. v. Wolfersdorf, On a class of generalized autoconvolution equations of the third kind, Z. Anal. Anw. (J. Anal. Appl.) 24 (2005), 217-250.
  • J. M. Burgers, The nonlinear diffusion equation, Reidel Publ. Co., Dordrecht-Holland, (1974).
  • A. Erdélyi (ed.), Higher transcendental functions, Vo. I - III, McGraw Hill, New York, (1953, 1955).
  • M. A. Evgrafov, Asymptotic estimates and entire functions (in Russ.), Gos. Izd. Tekh.-Teor. Lit., Moscow, (1957).
  • U. Frisch, Turbulence: the legacy of A. N. Kolmogorov, Cambridge University Press, Cambridge, (1995).
  • S. N. Gurbatov, A. I. Saichev and I. G. Yakushkin, Nonlinear waves and one-dimensional turbulence in nondispersive media, Sov. Phys. Usp. 26 (1983), 857-876.
  • F. Hirsch and G. Lacombe, Elements of functional analysis, Springer, New York, (1999).
  • B. Hofmann and L. v. Wolfersdorf, On the determination of a density function by its autoconvolution coefficient, Numer. Funct. Anal. Optim. 27 (2006), 357--375.
  • J. Janno, Nonlinear equations with operators satisfying generalized Lipschitz-conditions in scales, Z. Anal. Anw. (J. Anal. Appl.) 18 (1999), 287-295.
  • J. Janno and L. v. Wolfersdorf, A general class of autoconvolution equations of the third kind, Z. Anal. Anw. (J. Anal. Appl.) 24 (2005), 523-543.
  • J. Qian, Numerical experiments on one-dimensional model of turbulence, Phys. of Fluids 27 (1984), 1957-1965.
  • G. N. Watson, A treatise on the theory of Bessel functions, Cambridge University Press, Cambridge, (1996).
  • L. v. Wolfersdorf, On the theory of convolution equations of the third kind, J. Math. Anal. Appl. 331 (2007), 1314-1336.