Journal of Integral Equations and Applications

Pontryagin Principle in Abstract Spaces

B.D. Craven

Full-text: Open access

Article information

Source
J. Integral Equations Applications, Volume 20, Number 3 (2008), 379-392.

Dates
First available in Project Euclid: 22 September 2008

Permanent link to this document
https://projecteuclid.org/euclid.jiea/1222088487

Digital Object Identifier
doi:10.1216/JIE-2008-20-3-379

Mathematical Reviews number (MathSciNet)
MR2462472

Zentralblatt MATH identifier
1357.49095

Subjects
Primary: 11D45: Counting solutions of Diophantine equations 11L03: Trigonometric and exponential sums, general

Citation

Craven, B.D. Pontryagin Principle in Abstract Spaces. J. Integral Equations Applications 20 (2008), no. 3, 379--392. doi:10.1216/JIE-2008-20-3-379. https://projecteuclid.org/euclid.jiea/1222088487


Export citation

References

  • S. M. Aseev and A. V. Kryazhimskiy, The Pontryagin maximum principle and transversality conditions for a class of optimal control problems with in finite time horizons, SIAM J Control Optim, 43 (3), (2004), 1094-1119.
  • B. D. Craven, Control and Optimization, Chapman & Hall, London, (1995).
  • B. D. Craven, Pontryagin principle with a PDE - a unified approach, Workshop on Optimization and Analysis, National Tsing Hua University, Hsinchu, Taiwan, (2000).
  • B. D. Craven, Optimal control on an infinite domain, ANZIAM J, 47, (2005), 143-153.
  • B. Craven and S. M. N. Islam, Optimization in Economics and Finance, Springer, Dordrecht, (Chapter 9, Transversality Conditions for Infinite Horizon Models), (2005).
  • W. H. Fleming and R. W. Rishel, Deterministic and Stochastic Optimal Control, Springer, New York (1975).
  • H. Halkin, Necessary conditions for optimal control problems with infinite horizon, Econometrica, (1974), 267-272.
  • R. H. Martin, Nonlinear Operators and Differential Equations in Banach Spaces, Wiley, New York, (1976).