Journal of Integral Equations and Applications

Pseudospectra and Singular Values of Large Convolution Operators

Albrecht Böttcher

Full-text: Open access

Article information

J. Integral Equations Applications Volume 6, Number 3 (1994), 267-301.

First available in Project Euclid: 5 June 2007

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier


Böttcher, Albrecht. Pseudospectra and Singular Values of Large Convolution Operators. J. Integral Equations Applications 6 (1994), no. 3, 267--301. doi:10.1216/jiea/1181075815.

Export citation


  • P.M. Anselone and I.H. Sloan, Spectral approximations for Wiener-Hopf operators II, J. Integral Equations Appl. 4 (1992), 465-489.
  • E. Basor and K.E. Morrison, The Fisher-Hartwig conjecture and Toeplitz eigenvalues, Linear and Multilinear Algebra, to appear.
  • A. Böttcher, Analysis lokal sektorieller Matrixfunktionen und geometrische Spektraltheorie von Toeplitzoperatoren, Habilitationsschrift, TU Karl-Marx-Stadt, 1987.
  • A. Böttcher and B. Silbermann, The finite section method for Toeplitz operators on the quarter-plane with piecewise continuous symbols, Math. Nachr. 11 (1983), 279-291.
  • --------, Toeplitz operators and determinants generated by symbols with one Fisher-Hartwig singularity, Math. Nachr. 127 (1986), 95-124.
  • --------, Analysis of Toeplitz operators, Springer-Verlag, Berlin, Heidelberg, New York, 1990.
  • A. Böttcher and H. Widom, Two remarks on spectral approximations for Wiener-Hopf operators, J. Integral Equations Appl. 6 (1994), 31-36.
  • A. Brown and P. Halmos, Algebraic properties of Toeplitz operators, J. reine angew. Math. 213 (1963), 89-102.
  • K.M. Day, Measures associated with Toeplitz matrices generated by Laurent expansion of rational functions, Trans. Amer. Math. Soc. 209 (1975), 175-183.
  • J. Dixmier, Les $C^*$-algèbres et leurs représentations, Gauthier-Villars, Paris, 1969.
  • R.G. Douglas, Banach algebra techniques in operator theory, Academic Press, New York, 1972.
  • R. Duduchava, Integral equations with fixed singularities, Teubner, Leipzig, 1979.
  • I. Gohberg and I.A. Feldman, Convolution equations and projection methods for their solution, Amer. Math. Soc., Providence, RI, 1974 (Russian original: Nauka, Moscow, 1971; German translation: Akademie-Verlag, Berlin, 1974).
  • I. Gohberg and N. Ya. Krupnik, On the algebra generated by Toeplitz matrics, Funct. Anal. Appl. 3 (1969), 119-127.
  • R.A. Libby, Asymptotics of determinants and eigenvalue distributions of Toeplitz matrices with certain discontinuous symbols, Ph.D. thesis, University of California, Santa Cruz, 1990.
  • S.V. Parter, On the distribution of the singular values of Toeplitz matrices, Linear Algebra Appl. 80 (1986), 115-130.
  • S.C. Reddy, Pseudospectra of Wiener-Hopf integral operators and constant-coefficient differential operators, J. Integral Equations Appl. 5 (1993), 369-403.
  • L. Reichel and L.N. Trefethen, Eigenvalues and pseudo-eigenvalues of Toeplitz matrices, Linear Algebra Appl. 162 (1992), 153-185.
  • P. Schmidt and F. Spitzer, The Toeplitz matrices of an arbitrary Laurent polynomial, Math. Scand. 8 (1960), 15-38.
  • B. Silbermann, Lokale Theorie des Reduktionsverfahrens für Toeplitz-operatoren, Math. Nachr. 104 (1982), 45-56.
  • --------, On the limiting set of singular values of Toeplitz matrices, Linear Algebra Appl. 182 (1993), 35-43.
  • G. Szegö, Beiträge zur Theorie der Toeplitzschen Formen I, Math. Z. 6 (1920), 167-202.
  • S.R. Treil, The invertibility of a Toeplitz operator does not imply its invertibility by the projection method, Sov. Math. Dokl. 35 (1987), 103-107.
  • H. Widom, Toeplitz matrices, Studies in Real and Complex Analysis (I.I. Hirschman, Jr., ed.), MAA Stud. Math. 3 (1965), 179-209.
  • --------, Asymptotic behavior of block Toeplitz matrices and determinants II, Adv. Math. 21 (1976), 1-29.
  • --------, On the singular values of Toeplitz matrices, Z. Anal. Anwendungen 8 (1989), 221 -229.
  • --------, Eigenvalue distribution of nonselfadjoint Toeplitz matrices and the asymptotics of Toeplitz determinants in the case of nonvanishing index, Oper. Theory Adv. Appl. 48 (1990), 387-421.