Journal of Integral Equations and Applications

The Modified Quadrature Method for Logarithmic- Kernel Integral Equations on Closed Curves

Jukka Saranen

Full-text: Open access

Article information

Source
J. Integral Equations Applications, Volume 3, Number 4 (1991), 575-600.

Dates
First available in Project Euclid: 5 June 2007

Permanent link to this document
https://projecteuclid.org/euclid.jiea/1181075650

Digital Object Identifier
doi:10.1216/jiea/1181075650

Mathematical Reviews number (MathSciNet)
MR1150408

Zentralblatt MATH identifier
0747.65100

Subjects
Primary: 65R20: Integral equations
Secondary: 45L10

Keywords
Quadrature method integral operator logarithmic kernel

Citation

Saranen, Jukka. The Modified Quadrature Method for Logarithmic- Kernel Integral Equations on Closed Curves. J. Integral Equations Applications 3 (1991), no. 4, 575--600. doi:10.1216/jiea/1181075650. https://projecteuclid.org/euclid.jiea/1181075650


Export citation

References

  • M.S. Abou El-Seoud, Numerische Behandlung von schwach singulären Integralgleichungen 1. Art. Dissertation, Technische Hochschule Darmstadt, Federal Republic of Germany, Darmstadt, 1979.
  • D.N. Arnold, Spline-trigonometric Galerkin method and an exponentially convergent boundary integral method, Math. Comp. 41 (1983), 383-397.
  • D.N. Arnold and W.L. Wendland, On the asymptotic convergence of collocation methods, Math. Comp. 41 (1983), 349-381.
  • -------- and --------, The convergence of spline collocation for strongly elliptic equations on curves, Numer. Math. 47 (1985), 317-343.
  • K.E. Atkinson, A discrete Galerkin method for first kind integral equations with a logarithmic kernel, J. Integral Equations and Appl. 1 (1988), 343-363.
  • C.T.H. Baker, The numerical treatment of integral equations, Clarendon Press, Oxford, 1977.
  • R.S.-C. Cheng and D.N. Arnold, The delta-trigonometic method using the single-layer potential representation, J. Integral Equations and Appl. 1 (1988), 517-547.
  • S. Christiansen, Numerical solution of an integral equation with a logarithmic kernel, BIT 11 (1971), 276-287.
  • G.C. Hsiao, P. Kopp and W.L. Wendland, A Galerkin collocation method for some integral equations of the first kind, Computing 25 (1980), 89-130.
  • G.C. Hsiao and W.L. Wendland, A finite element method for some integral equations of the first kind equations on curves, J. Math. Anal. Appl. 58 (1977), 449-481.
  • L.V. Kantorovich and V.I. Krylov, Approximate methods for higher analysis, Interscience, 1958.
  • I. Lusikka, K. Ruotsalainen and J. Saranen, Numerical implementation of the boundary element method with point-source approximation of the potential, Engineering Analysis 3 (3) (1986), 144-153.
  • W. McLean, A spectral Galerkin method for boundary integral equation, Math. Comp. 47 (1986), 597-607.
  • K. Ruotsalainen and J. Saranen, Some boundary element methods using Dirac's distributions as trial functions, SIAM J. Numer. Anal. 24 (4) (1987), 816-827.
  • -------- and --------, A dual method to the collocation method, Math. Meth. in Appl. Sci. 10 (1988), 439-445.
  • -------- and --------, On the convergence of the Galerkin method for nonsmooth solutions of integral equations, Numer. Math. 54 (1988), 295-302.
  • J. Saranen, The convergence of even degree spline collocation solution for potential problems in smooth domains of the plane, Numer. Math. 53 (1988), 499-512.
  • --------, On the effect of numerical quadratures in solving boundary integral equations, Notes on Numerical Fluid Mechanics 21 (1988), 196-209.
  • --------, Extrapolation methods for spline collocation solutions of pseudodifferential equations on curves, Numer. Math. 56 (1989), 385-407.
  • J. Saranen and I.H. Sloan, Quadrature methods for logarithmic-kernel integral equations on closed curves, in preparation.
  • J. Saranen and W.L. Wendland, On the asymptotic convergence of collocation methods with spline functions of even degree, Math. Comp. 45 (1985), 91-108.
  • I.H. Sloan and B.J. Burn, An unconventional quadrature method for logarithmic-kernel integral equations on closed curves, to appear.
  • I.H. Sloan, A quadrature-based approach to improving the collocation method, Numer. Math. 54 (1988), 41-56.
  • I.H. Sloan and W.L. Wendland, A quadrature-based approach to improving the collocation method for splines of even degree, to appear in ZAA.
  • W.L. Wendland, On the asymptotic convergence of boundary integral methods, in Boundary element methods, ed. C.A. Brebbia, Springer, Berlin-Heidelberg-New York, 1981, pp. 412-430.
  • --------, On some mathematical aspects of boundary element methods for elliptic problems, in The mathematics of finite elements and applications V, ed. J.R. Whiteman, Academic Press, London, 1985, pp. 193-227.