Journal of Integral Equations and Applications

On Implicitly Linear and Iterated Collocation Methods for Hammerstein Integral Equations

Hermann Brunner

Full-text: Open access

Article information

J. Integral Equations Applications, Volume 3, Number 4 (1991), 475-488.

First available in Project Euclid: 5 June 2007

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier


Brunner, Hermann. On Implicitly Linear and Iterated Collocation Methods for Hammerstein Integral Equations. J. Integral Equations Applications 3 (1991), no. 4, 475--488. doi:10.1216/jiea/1181075645.

Export citation


  • K.E. Atkinson, A survey of numerical methods for solving nonlinear integral equations, Report No. 3, Dept. of Mathematics, University of Iowa, March 1990.
  • K.E. Atkinson and F.A. Potra, Projection and iterated projection methods for nonlinear integral equations, SIAM J. Numer. Anal. 24 (1987), 1352-1373.
  • J.G. Blom and H. Brunner, The numerical solution of nonlinear Volterra integral equations of the second kind by collocation and iterated collocation methods, SIAM J. Sci. Statist. Comput. 8 (1987), 806-830.
  • H. Brunner, Collocation methods for one-dimensional Fredholm and Volterra integral equations, in The state of the art in numerical analysis (A. Iserles and M.J.D. Powell, eds.), Clarendon Press, Oxford, 1987, 563-600.
  • --------, On discrete superconvergence properties of spline collocation methods for nonlinear Volterra integral equations, J. Comput. Math. (to appear).
  • --------, On the numerical solution of nonlinear Volterra-Fredholm integral equations by collocation methods, SIAM J. Numer. Anal. 27 (1990), 987-1000.
  • H. Brunner and P.J. van der Houwen, The numerical solution of Volterrra equations, CWI Monographs 3, North-Holland, Amsterdam, 1986.
  • M. Ganesh and M.C. Joshi, Discrete numerical solvability of Hammerstein integral equations of mixed type, J. Integral Equations Appl. 2 (1989), 107-124.
  • M.A. Krasnosel'skii and P.P. Zabreiko, Geometrical methods of nonlinear analysis, Springer-Verlag, Berlin-Heidelberg-New York, 1984.
  • S. Kumar, Superconvergence of a collocation-type method for Hammerstein equations, IMA J. Numer. Anal. 7 (1987), 313-325.
  • --------, A discrete collocation-type method for Hammerstein equations, SIAM J. Numer. Anal. 25 (1988), 328-341.
  • S. Kumar and I.H. Sloan, A new collocation-type method for Hammerstein integral equations, Math. Comp. 48 (1987), 585-593.