Journal of Integral Equations and Applications

Analysis and Numerics of an Integral Equation Model for Slender Bodies in Low Reynolds-Number Flows

Th. Götz and A. Unterreiter

Full-text: Open access

Article information

Source
J. Integral Equations Applications, Volume 12, Number 3 (2000), 225-270.

Dates
First available in Project Euclid: 5 June 2007

Permanent link to this document
https://projecteuclid.org/euclid.jiea/1181074810

Digital Object Identifier
doi:10.1216/jiea/1020282207

Mathematical Reviews number (MathSciNet)
MR1810742

Zentralblatt MATH identifier
0985.76022

Citation

Götz, Th.; Unterreiter, A. Analysis and Numerics of an Integral Equation Model for Slender Bodies in Low Reynolds-Number Flows. J. Integral Equations Applications 12 (2000), no. 3, 225--270. doi:10.1216/jiea/1020282207. https://projecteuclid.org/euclid.jiea/1181074810


Export citation

References

  • A.T. Chwang and T.Y. Wu, Hydromechanics of low-Reynolds-number flow. Part 2. Singularity methods for Stokes flow, J. Fluid Mech. 67 (1975), 787-815.
  • R.G. Cox, The motion of long slender bodies in a viscous fluid. Part 1. General theory, J. Fluid Mech. 44 (1970), 791-810.
  • R. Dautray and J.L. Lions, Integral equations and numerical methods, in Mathematical Analysis and Numerical Methods for Science and Technology 4, Springer, New York, 1990.
  • D. Funaro, Fortran routines for spectral methods, Technical Report 891, Istituto di analisi numerica, Pavia, Italy, ftp://microian.ian.pv.cnr.it/pub/splib, 1993.
  • R. Gorenflo and S. Vessella, Abel integral equations, Lecture Notes in Math. 1461, Springer, New York, 1991.
  • T. Götz, Interaction of fibers with airflow, Ph.D. Thesis, Department of Mathematics, University of Kaiserslautern, in progress.
  • W. Hackbusch, Integralgleichungen: Theorie und Numerik, Teubner, Leipzig, 1989.
  • J.B. Keller and S.I. Rubinow, Slender-body theory for slow viscous flow, J. Fluid Mech. 75 (1976), 705-714.
  • S.H. Lee and L.G. Leal, Low-Reynolds-number flow past cylindrical bodies of arbitrary cross-sectional shape, J. Fluid Mech. 164 (1986), 401-427.
  • J. Lighthill, Mathematical biofluiddynamics, SIAM, Philadelphia, PA, 1975.
  • N.I. Muskhelishvili, Singular integral equations, Wolters-Noordhoff, 1972.
  • H. Ockendon and E.L. Terril, A mathematical model for the wet-spinning process, European J. Appl. Math. 4 (1993), 341-360.
  • C.S. Peskin and D.M. McQueen, A three-dimensional computational method for blood flow in the heart. I. Immersed elastic fibers in a viscous incompressible fluid, J. Comput. Physics 81 (1989), 372-405.
  • A.D. Polyanin and A.V. Manzhirov, Handbook of integral equations, Spektrum, Heidelberg, 1999.
  • C. Pozrikdis, Boundary integrals and singularity methods for linearized viscous flow, Cambridge Texts Appl. Math. 8, Cambridge Univ. Press, Cambridge, 1992.
  • S. Prössdorf and B. Silbermann, Numerical analysis for integral and related operator equations, Akademie Verlag, Berlin, 1991.
  • M. Reed and B. Simon, Functional analysis, in Methods of Modern Mathematical Physics 1, Academic Press, New York, 1980.
  • S. Roch, P. Junghanns and U. Weber, Finite sections for singular integral operators by weighted Chebyshev polynomials, Integral Equations Operator Theory 21 (1995), 319-333.