Journal of Geometry and Symmetry in Physics

On Soliton Equations with $\mathbb{Z}_{h}$ and $\mathbb{D}_{h}$ Reductions: Conservation Laws and Generating Operators

Vladimir S. Gerdjikov and Alexandar B. Yanovski

Full-text: Open access

Abstract

The Lax representations for the soliton equations with $\mathbb{Z}_h$ and $\mathbb{D}_h$ reductions are analyzed. Their recursion operators are shown to possess factorization properties due to the grading in the relevant Lie algebra. We show that with each simple Lie algebra one can relate $r$ fundamental recursion operators ${\boldsymbol \Lambda}_{m_k}$ and a master recursion operator ${\boldsymbol \Lambda}$ generating NLEEs of MKdV type and their Hamiltonian hierarchies. The Wronskian relations are formulated and shown to provide the tools to understand the inverse scattering method as a generalized Fourier transform. They are also used to analyze the conservation laws of the above mentioned soliton equations.

Article information

Source
J. Geom. Symmetry Phys., Volume 31 (2013), 57-92.

Dates
First available in Project Euclid: 26 May 2017

Permanent link to this document
https://projecteuclid.org/euclid.jgsp/1495764057

Digital Object Identifier
doi:10.7546/jgsp-31-2013-57-92

Mathematical Reviews number (MathSciNet)
MR3154684

Zentralblatt MATH identifier
1293.35268

Citation

Gerdjikov, Vladimir S.; Yanovski, Alexandar B. On Soliton Equations with $\mathbb{Z}_{h}$ and $\mathbb{D}_{h}$ Reductions: Conservation Laws and Generating Operators. J. Geom. Symmetry Phys. 31 (2013), 57--92. doi:10.7546/jgsp-31-2013-57-92. https://projecteuclid.org/euclid.jgsp/1495764057


Export citation