Journal of Geometry and Symmetry in Physics

Quasiclassical and Quantum Systems of Angular Momentum. Part II. Quantum Mehanics on Lie Groups and Methods of Group Algebras

Jan J. Slawianowski, Vasyl Kovalchuk, Agnieszka Martens, Barbara Golubowska, and Ewa E. Rozko

Full-text: Open access

Abstract

In Part I of this series we presented the general ideas of applying group-algebraic methods for describing quantum systems. The treatment was there very “ascetic” in that only the structure of a locally compact topological group was used. Below we explicitly make use of the Lie group structure. Basing on differential geometry enables one to introduce explicitly representation of important physical quantities and formulate the general ideas of quasiclassical representation and classical analogy.

Article information

Source
J. Geom. Symmetry Phys., Volume 22 (2011), 67-94.

Dates
First available in Project Euclid: 25 May 2017

Permanent link to this document
https://projecteuclid.org/euclid.jgsp/1495677811

Digital Object Identifier
doi:10.7546/jgsp-22-2011-67-94

Mathematical Reviews number (MathSciNet)
MR2827535

Zentralblatt MATH identifier
1239.81048

Citation

Slawianowski, Jan J.; Kovalchuk, Vasyl; Martens, Agnieszka; Golubowska, Barbara; Rozko, Ewa E. Quasiclassical and Quantum Systems of Angular Momentum. Part II. Quantum Mehanics on Lie Groups and Methods of Group Algebras. J. Geom. Symmetry Phys. 22 (2011), 67--94. doi:10.7546/jgsp-22-2011-67-94. https://projecteuclid.org/euclid.jgsp/1495677811


Export citation