Journal of Geometry and Symmetry in Physics

Quasiclassical and Quantum Systems of Angular Momentum. Part III. Group Algebra $\frak{su}(2)$, Quantum Angular Momentum and Quassiclassical Asymptotics

Jan J. Slawianowski, Vasyl Kovalchuk, Agnieszka Martens, Barbara Golubowska, and Ewa E. Rozko

Full-text: Open access

Abstract

This is the third part of our series “Quasiclassical and Quantum Systems of Angular Momentum”. In two previous parts we have discussed the methods of group algebras in formulation of quantum mechanics and certain quasiclassical problems. Below we specify to the special case of the group ${\rm SU}(2)$ and its quotient ${\rm SO}(3,\mathbb{R})$, and discuss just our main subject in this series, i.e., angular momentum problems. To be more precise, this is the purely ${\rm SU}(2)$-treatment, so formally this might also apply to isospin. However. it is rather hard to imagine realistic quasiclassical isospin problems.

Article information

Source
J. Geom. Symmetry Phys., Volume 23 (2011), 59-95.

Dates
First available in Project Euclid: 25 May 2017

Permanent link to this document
https://projecteuclid.org/euclid.jgsp/1495677663

Digital Object Identifier
doi:10.7546/jgsp-23-2011-59-95

Mathematical Reviews number (MathSciNet)
MR2827537

Zentralblatt MATH identifier
1238.81132

Citation

Slawianowski, Jan J.; Kovalchuk, Vasyl; Martens, Agnieszka; Golubowska, Barbara; Rozko, Ewa E. Quasiclassical and Quantum Systems of Angular Momentum. Part III. Group Algebra $\frak{su}(2)$, Quantum Angular Momentum and Quassiclassical Asymptotics. J. Geom. Symmetry Phys. 23 (2011), 59--95. doi:10.7546/jgsp-23-2011-59-95. https://projecteuclid.org/euclid.jgsp/1495677663


Export citation