## Journal of Differential Geometry

- J. Differential Geom.
- Volume 105, Number 1 (2017), 33-54.

### Width, Ricci curvature, and minimal hypersurfaces

Parker Glynn-Adey and Yevgeny Liokumovich

#### Abstract

Let $(M,g_0)$ be a closed Riemannian manifold of dimension $n$, for $3 \leq n \leq 7$, and non-negative Ricci curvature. Let $g = \phi^2 g_0$ be a metric in the conformal class of $g_0$. We show that there exists a smooth closed embedded minimal hypersurface in $(M,g)$ of volume bounded by $C(n)V^{\frac{n-1}{n}}$, where $V$ is the total volume of $(M,g)$. When $Ric(M,g_0) \geq -(n-1)$ we obtain a similar bound with constant $C$ depending only on n and the volume of $(M,g_0)$. Our second result concerns manifolds $(M,g)$ of positive Ricci curvature and dimension at most seven. We obtain an effective version of a theorem of F. C. Marques and A. Neves on the existence of infinitely many minimal hypersurfaces on $(M,g)$. We show that for any such manifold there exists $k$ minimal hypersurfaces of volume at most $C_n V ({\mathrm{sys}_{n-1}(M))}^{- \frac{1}{n-1}} k^{\frac{1}{n-1}}$, where $V$ denotes the volume of $(M,g_0)$ and $\mathrm{sys}_{n-1}(M)$ is the smallest volume of a non-trivial minimal hypersurface.

#### Article information

**Source**

J. Differential Geom., Volume 105, Number 1 (2017), 33-54.

**Dates**

Received: 25 November 2014

First available in Project Euclid: 5 January 2017

**Permanent link to this document**

https://projecteuclid.org/euclid.jdg/1483655859

**Digital Object Identifier**

doi:10.4310/jdg/1483655859

**Mathematical Reviews number (MathSciNet)**

MR3592694

**Zentralblatt MATH identifier**

1359.53051

#### Citation

Glynn-Adey, Parker; Liokumovich, Yevgeny. Width, Ricci curvature, and minimal hypersurfaces. J. Differential Geom. 105 (2017), no. 1, 33--54. doi:10.4310/jdg/1483655859. https://projecteuclid.org/euclid.jdg/1483655859