Journal of Differential Geometry

A lower bound for the number of negative eigenvalues of Schrödinger operators

Alexander Grigor’yan, Nikolai Nadirashvili, and Yannick Sire

Full-text: Open access

Abstract

We prove a lower bound for the number of negative eigenvalues for a Schrödinger operator on a Riemannian manifold via the integral of the potential.

Article information

Source
J. Differential Geom., Volume 102, Number 3 (2016), 395-408.

Dates
First available in Project Euclid: 29 February 2016

Permanent link to this document
https://projecteuclid.org/euclid.jdg/1456754014

Digital Object Identifier
doi:10.4310/jdg/1456754014

Mathematical Reviews number (MathSciNet)
MR3466803

Zentralblatt MATH identifier
1356.53044

Citation

Grigor’yan, Alexander; Nadirashvili, Nikolai; Sire, Yannick. A lower bound for the number of negative eigenvalues of Schrödinger operators. J. Differential Geom. 102 (2016), no. 3, 395--408. doi:10.4310/jdg/1456754014. https://projecteuclid.org/euclid.jdg/1456754014


Export citation