Journal of Differential Geometry

Calabi-Yau structures on cotangent bundles

Alexandru Doicu

Full-text: Open access

Abstract

Starting with a orientable compact real-analytic Riemannian manifold $(L,g)$ with $\chi (L) = 0$, we show that a small neighborhood $\mathrm{Op}(L)$ of the zero section in the cotangent bundle $T*L$ carries a Calabi–Yau structure such that the zero section is an isometrically embedded special Lagrangian submanifold.

Article information

Source
J. Differential Geom., Volume 100, Number 3 (2015), 481-489.

Dates
First available in Project Euclid: 28 May 2015

Permanent link to this document
https://projecteuclid.org/euclid.jdg/1432842361

Digital Object Identifier
doi:10.4310/jdg/1432842361

Mathematical Reviews number (MathSciNet)
MR3352795

Zentralblatt MATH identifier
1319.32021

Citation

Doicu, Alexandru. Calabi-Yau structures on cotangent bundles. J. Differential Geom. 100 (2015), no. 3, 481--489. doi:10.4310/jdg/1432842361. https://projecteuclid.org/euclid.jdg/1432842361


Export citation